LDMX: The Light Dark Matter eXperiment December 16, 2022 Matt Solt, University of Virginia

Workshop on Multi-front Exotic phenomena in Particle and Astrophysics (MEPA 2022)

16-19 December 2022 Hefei University of Science and Technology of China

A Thermal Relic

- A thermal relic simple and predictive model of dark matter (DM)
- WIMPs are popular, but accessible parameter space is running out of room
- Increasing interest in expanding the thermal DM search to "Light" DM in the MeV-GeV mass range

Light Dark Matter

- Simplest prediction includes a dark photon (heavy photon or A') that undergoes kinetic mixing with the SM photon
- Thermal prediction targets make attainable predictions with accelerators

Dark Photon with a Fixed Target

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production, invisible decay
 - A's take most of the beam energy; only visible final state particle is a soft recoil electron

- Can probe this mechanism through a missing momentum search. We need...
 - \circ High momentum resolution

Matt Solt

• High veto efficiency of SM backgrounds

LDMX Concept

- Missing momentum and energy approach e^-
 - DM production identified by missing energy/momentum in detector
 - Equipped for particle ID e/gamma
 - Recoil pT used as discriminator/identifier

- 4 and 8 GeV e- beam provide by SLAC
 - Parasitically use the LCLS II beam with a dedicated transfer line (LESA)
 - Individual tagging and reconstruction of up to 1e16 electrons
 - \circ $\,$ Low current, high repetition rate 37 MHz, μ = 1 $\,$

LDMX Design

- Need hermetic detector designed for high rates and high radiation doses
 - **Tagging/recoil tracker**: fast with high momentum resolution and large acceptance
 - Electromagnetic calorimeter: fast, good energy resolution, and high granularity
 - Hadronic calorimeter: high veto efficiency of neutral hadrons

Tracker and Trigger Scintillator

- Tagging tracker
 - Measures incoming beam electron
- Recoil tracker (based on Heavy Photon Search design)
 - Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - \circ ~ Used an input to the missing energy trigger

Backgrounds

Electromagnetic Calorimeter

- 40 X0 Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - Provides fast missing energy trigger
 - Dense, radiation hard, full shower containment, and high granularity

Backgrounds

11

Ecal Veto

- More difficult to veto: Rare photon reactions that deposit low energy in the Ecal
 - Exploit longitudinal/transverse shower shapes and train a boosted decision tree (BDT)
 - High granularity Ecal enables MIP tracking

A.Martelli on behalf of CMS, arXiv:1708.08234

Backgrounds

Hadronic Calorimeter

- Sampling calorimeter with segmented plastic/steel
 - Readout by wavelength shifting fibers and SiPMs (based on the Mu2e Cosmic Ray Veto design)
 - Highly efficient veto for PN processes that produce neutral hadrons. Desire 1e-6 rejection
 - $\circ~$ Side HCal rejects wide angle bremsstrahlung and $\gamma{\rightarrow}\mu{+}\mu{-}$

Signal Kinematics

- Transverse momentum of recoil election is the last veto handle
- Currently not used in veto efficiency estimates, but as a backup discriminator
- Transverse momentum can also be used to estimate/constrain DM mass scale

 $2m_{DM} < m_{A'}$

Phase 1: 4 GeV, 10¹⁴ electrons Phase 2: 8 GeV, 10¹⁶ electrons

arXiv:1808.05219

2020	2023	2025	2027	
Detector Development	Construction	Phase I data taking	Phase II construction & operation	

CERN Test Beam

Recent successful test beam with HCal prototype at CERN PS in April, 2022

17

LDMX Visible Signatures

- Broad physics potential for LDMX beyond missing momentum search
 - Displaced visible decays minimal dark photon, ALPs, SIMPs, etc.
 - Electronuclear measurements for neutrino physics arXiv:1912.06140

Conclusion

- Thermal relic models offer plausible and predictive models of dark matter
- LDMX can conclusively probe many such models in the sub-GeV mass range through a missing momentum search
- LDMX offers a broader physics program for visible searches and neutrino measurements

21

Ecal/Hcal Vetoes

- Ecal BDT > 0.99
- Hcal max PEs is > 5

Electro-nuclear Scattering Measurements

arXiv:1912.06140

Advantage of DM Production at Accelerators

Non-relativistic vs semi-relativistic DM scattering

Light Dark Matter

10

COUPP (2012)

ZEPLIN-III (2012)