Light Dark Matter eXperiment

Joshua Hiltbrand, University of Minnesota on behalf of the **LDMX** Collaboration

> TeVPA 2017 7 - 11 August 2017

A Thermal Relic

DMX

Plentiful evidence for dark matter!

- Assuming DM has thermal origin
 - Constrains viable mass window
 - Sets minimum annihilation cross section

Looking for Light Dark Matter

Amazing direct detection work has been done to explore WIMP phase space!

- LDM regime largely unexplored, well motivated
 - However, SM forces cannot give observed matter density
 - New, light forces must be present
 - Vector mediator (dark photon) a simple, but predictive model

Reaching LDM Thermal Targets

Significant velocity dependence for direct detection cross section leaves some targets out of reach

Thermal targets are within reach!

LDM Accelerator Searches

The Light Dark Matter eXperiment DMX

Dark Bremsstrahlung

\boldsymbol{P} Backgrounds

7 August 2017

8

Tracking System

DMX

18D36 Dipole Field

- Tagging Tracker
 - Objective: Verify incoming electron has beam energy and veto otherwise
- Recoil Tracker
 - Objective: Identify low-momentum, recoiling electrons

Designed with experience from HPS

10

Electromagnetic Calorimeter

• **Objective:** Make high speed energy measurements with excellent resolution and radiation hardness

Hardware based on CMS forward calorimeter upgrade

Trigger

-LDWX

- Primary physics trigger
 - Total energy deposition in the first 20 layers of the ECal
 - Trigger on low energy!
 - Reduce beam particle rate from 46 MHz to 4 kHz

Hadronic Calorimeter

- DMX

• **Objective:** Assist ECal in vetoing photonuclear

Takes advantage of CMS Phase I upgrade

Physics Potential

- DMX

Summary

-LDMX

- Accelerator-based experiments uniquely sensitive to sub-GeV range
 - Missing momentum technique has the best sensitivity
- LDMX has broad sensitivity over sub-GeV mass range
- Other physics potential
 - Displaced vertex from visibly decaying mediators
 - Displaced electron-positron showers that result from DM co-annihalation models
 - Dark Vectors decaying to neutrinos
 - Photonuclear and electronuclear measurements for neutrino scattering

LDMX Phase 2

A' Mass [MeV]

 10^{2}

(4 & 8 GeV)

10

 10^{-12}

 10^{-13}

 10^{-14}

 10^{-15}

 10^{3}

The Collaboration

Bertrand Echenard, David Hitlin

Gordan Krnjaic, Nhan Tran, Andrew Whitbeck

Norman Graf, Jeremy McCormick, Takashi Maruyama, Omar Moreno, Tim Nelson, Philip Schuster, Natalia Toro

UNIVERSITY OF CALIFORNIA SANTA BARBARA **Owen Colegrove, Joe Incandela, Alex Patterson**

University of Minnesota

Josh Hiltbrand, Jeremy Mans, Reese Petersen

Robert Johnson

Backup

Dealing with Photons

Photonuclear events

- Currently able to reject on the order of a few x 10¹³ EOT
- Investigating overproduction of exotic final state kinematics in Geant4

- Extremely hard, backwards going hadrons
 - Overproduced by perhaps orders of magnitude!

- Muon conversion
 - Can be treated similarly to photonuclear
 - Currently can veto all but a few in 10¹³ EOT
 - Looking at Geant4 form factor implementation