Recent Progress Toward the Light Dark Matter eXperiment (LDMX)

Jessica Pascadlo UVA High Energy Seminar May 1, 2024

Standard Model of Particle Physics

- The biggest success of particle physics!
 - Has accurately explained almost all experimental results and precisely predicted other phenomena since the 1970s
- Each of these particles have been observed experimentally
 - All quarks, half of the leptons, and all bosons except for the photon were discovered using particle accelerators
- If we have the Standard Model (SM), and it works so well, why do we care about searching for dark matter?

Why Dark Matter?

- We don't understand about 95% of the Universe's composition!
 - The current SM must not be complete
 - Learning more about the nature of dark matter will (begin to) answer one of the foremost open questions in particle physics

Evidence for Dark Matter

- Strong case for the existence of dark matter (DM)
 - Galaxy rotation curves
 - Gravitational lensing
 - Cosmic Microwave Background anisotropy
 - Cluster collisions

- No detection (yet!) the origin and nature of DM is a key puzzle for particle physics
 - Standard model does not include dark matter
 - How do we narrow down a search region to determine what DM is?

Trying to Understand Dark Matter

- What <u>do</u> we know?
 - Interacts gravitationally
 - Cosmological abundance
 - Limited interactions with known (SM) matter
- We don't know the mass of the DM

Thermal Dark Matter

- Assume we are dealing with *particle-like DM*
- DM and SM particles in thermal equilibrium in the very early universe
- As universe cools and expands, DM pairs are no longer in equilibrium, resulting in decreasing amount of interactions
- Universe expands and cools enough such that DM is too dilute to interact → freeze-out
- The current relic density Ω_X is related to the annihilation cross section $\langle \sigma v \rangle$

$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle} \longrightarrow \langle \sigma v \rangle = 3 \times 10^{-26} \ \frac{\mathrm{cm}^3}{\mathrm{s}}$$

Thermal Dark Matter - LDM and WIMPs

These assumptions/observations greatly narrow down our mass range!

Thermal Dark Matter - WIMP Direct Detection Limits

WIMPs are well-motivated, but accessible parameter space is shrinking

Thermal Dark Matter - Light Dark Matter

- Natural extension to search other area of thermal dark matter light dark matter (LDM)
- Still at the mass scale where SM particles exist, so it is important to explore!
- Need a new non-SM interaction for this coupling of DM to SM matter

Light Thermal Dark Matter - Hidden Sector

- DM could belong to some "hidden sector" that is secluded from the SM
- Sub-GeV DM requires an additional non-SM interaction to maintain the correct relic abundance
 - Mediated by new massive gauge boson

Light Thermal Dark Matter - Hidden Sector

- DM could belong to some "hidden sector" that is secluded from the SM
- Sub-GeV DM requires an additional non-SM interaction to maintain the correct relic abundance
 - Mediated by new massive gauge boson

- Additional spin-one gauge boson (**dark photon** or **A'**)
 - neutral under SM
 - Hidden, broken symmetry **U(1)**
- Kinetically mixing with SM U(1), with factor ε
- Visible and invisible final states

Light Thermal Dark Matter - Hidden Sector

 DM could belong to some "hidden sector" that is secluded from the SM

 $\epsilon F^{\mu\nu}F'_{\mu\nu}$

The minimal Dark Photon model is an ubiquitous benchmark for the physics community

Kinetically mixing with Sivi U(1), with factor e

Visible and invisible final states

 $\alpha_D = \frac{g_D^2}{2}$

SM

Dark Photon Production at Accelerators

Advantage of DM Production at Accelerators

ALL "thermal targets" for sub-GeV dark matter models are much more \bigcirc accessible for accelerator experiments

Key difference is the non-relativistic (DM-e) vs relativistic (accel.) DM scattering

 10^{-35}

 10^{-37}

 10^{-39}

Thermal and Asymmetric Targets for DM-e Scattering

Elastic Scalar

Current exclusion

Jessica Pascadlo | UVA High Energy Seminar

Dark Photon Signatures

 $\frac{2m_e < m_{A'} < 2m_{\chi}}{e^-} \qquad \underbrace{e^-}_{A'} \qquad \underbrace{A'}_{A'} \qquad e^-_{e^+}$

- Invisible decay
 - Decays into DM particles that don't interact with detector
- For LDMX, characterized by some missing energy/momentum in the detector as a whole

- <u>Visible decay</u>
 - Decays into SM particles
 - Long-lived
- For LDMX, characterized by a displaced, sudden appearance of energy deposited in some downstream part of the detector

Also use detectors to identify the missing momentum & energy \rightarrow DM production! Particle ID

Transverse momentum of recoil e⁻ used as discriminator/identifier 0

electron

Ο

0

Jessica Pascadlo | UVA High Energy Seminar

17

SM Brem **PN** Reaction 3 m 3th Target Target E < E⊳ E < E⊳ Beam Beam energy E_B, 4-16 Ge energy E_B, 4-16 Ge nn.... • • Sampling Calorimeters Sampling Calorimeters Tracking Tracking

- Ο
- electron
- - Also use detectors to identify the missing momentum & energy \rightarrow DM production! Ο
 - Particle ID

LDMX Concept

- Transverse momentum of recoil e⁻ used as discriminator/identifier 0
- Must mitigate SM background

Ο

- Main background is SM 0 bremsstrahlung
 - Most challenging background is photo-nuclear (PN) reactions

Dark Photon Kinematics at a Fixed Target Experiment

Fixed target signal characteristics:

 \rightarrow Dark bremsstrahlung A' production (invisible decay)

 \rightarrow A's take most of the beam energy; only visible final state particle is a soft recoil electron

Dark Photon Kinematics at a Fixed Target Experiment

- A'→χχ carry away most of the beam energy and escape undetected
 - Opposite behavior for the bremsstrahlung emission

- Recoil electron p_T spectrum depends strongly on m_A, for signal
 - Signal identification or extra handle for background rejection

LDMX Design

- Basically dumping the beam onto our detector!
 - Need hermetic, radiation tolerant detector designed for high beam rates
- **Tagging tracker**: low acceptance and high resolution at beam energy
- **Recoil tracker**: large acceptance and high resolution at low particle momenta
- Electromagnetic calorimeter: fast, good energy resolution, and high granularity
- Hadronic calorimeter: high veto efficiency
 of neutral hadrons
- **Trigger Scintillator**: scintillator bars provide fast, accurate count of incoming electrons

Tracking and Target System

Tracking system

arXiv:2212.10629v2

- Silicon tracker reuses HPS designs for detector modules and readout
- <u>Tagging tracker</u> in central dipole field, measures incoming electron
- <u>Recoil tracker</u> in fringe field, measures recoil electron and vetoes extra particles

Thin Target

- Balance signal rate vs momentum resolution
- 0.1X₀ Tungsten target, considering an active target

Trigger Scintillator (TS)

- Arrays of scintillator bars able to count number of incoming electrons in each beam pulse
- Primary input to missing energy trigger system!
- Read out through SiPMs, though the associated electronics will be different than the Hadronic Calorimeter

Scintillator pads around target

TS Prototype from CERN testbeam

Electromagnetic Calorimeter (Ecal)

- Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - ~ 40 X_0 depth (34 Si layers) for extraordinary shower containment
 - Provides fast missing energy trigger (E < 1.5 GeV)
 - <u>High granularity</u> transverse and longitudinal shower shapes can be exploited to reject backgrounds
 - Capable of MIP tracking to further improve background rejection

0

Hadronic Calorimeter (Hcal)

- Segmented scintillator/steel sampling calorimeter
 - $_{\circ}$ 96 layers of 20 (25) mm of polystyrene (Fe) → ~17λ
- Detects neutral hadrons (mostly K_L,n) produced in photonuclear reactions, and MIPs
- Extruded scintillator bars with inserted wavelength-shifting fibers, read out with SiPMs
 - developed for Mu2e Cosmic Ray Veto <u>I worked on this</u>!
- Side HCal rejects wide angle brem and $\gamma \rightarrow \mu + \mu$ -

Projected Sensitivity

- LDMX is able to reach ALL thermal targets!
 - Even with some background included for the 8 GeV run, clearly pass all the benchmark models, so we will be able to exclude all of them
- y is just a measure of the interaction strength, and is a dimensionless variable often used

Additional Physics - Visible Signatures

- Complementary to main search, LDMX can also look for A' decays into SM particles (visible decay channel)
 - \circ 2m_e < m_{A'} < 2m_{\chi}
- Many models could be tested (minimal dark photon, ALPs, SIMPS, etc.)

Visibles Sensitivity

- UVA group has been focusing on minimal dark photon model
- Successfully developed new trigger and trained new BDT to reject backgrounds
 - Not expected to be background-free, unlike the main search
- Work is ongoing (but almost complete!) for 4 GeV study, internal note almost ready for review by physics committee
 - Next step is to do full 8 GeV study

Ecal as Target (EaT) Visibles Search

- To be able to probe additional untouched areas of parameter space, need to increases the reach to larger epsilon, which means decreasing the baseline
- Could attempt to do an short run where the beam is shot directly at the front face of the Ecal, without a target in-between

Where are we?

- 2020-present: DOE Dark Matter New Initiatives (DMNI) Funding
- 2027 (TBC/funding dependent): Begin construction!
- 2029 (TBC): Begin data taking!

With DMNI R&D Funding

- Spring 2022: CERN testbeam with (partial) Hcal and TS prototypes
- Fall 2024: S30XL Beam Commissioning using TS prototype
- 2025 (TBC): testbeam at SLAC

LDMX Testbeam at CERN

- Successful testbeam at CERN PS in April 2022
 - Hcal and TS prototypes
- Demonstrated successful operations, readout & electronics, and basic physics capabilities of two subsystems
- Analysis work/internal note ongoing

_ Hadronic Calorimeter (HCal) – Trigger scintillator (TS)

First steel absorber layer of the hadronic calorimeter

TS plastic scintillator – encased in black tape for light tightness –TS readout electronics

____ Gantry to adjust ____ position of TS in beamspot

LDMX Testbeam at CERN - Preliminary Results

- TS response well modeled by Geant4 MC simulation
- Excellent Hcal MIP identification capability

Accelerator Requirements for LDMX

- Low-intensity, multi-GeV electron beam (up to 10¹⁶ electrons on target (EoT))
 - Average of a single electron on target per event
- Large beamspot (~20cm²) and high-repetition rate

<u>Goals</u>

- Identify individual electrons in the detectors at higher rate with fine spatial and temporal resolution
- Minimize the peak radiation dose and minimize radiation damage to the tracker and calorimeter systems

Beam for LDMX

LCLS-II (Linac Coherent Light Source) beam at SLAC

- Free electron laser producing femtosecond X-ray pulses for multipurpose science
- 99% of electron bunches are unused!

S30XL/LESA

- New beamline to drive 60% of unused low-charge bunches to End Station A
- Able to run in a mode that is completely parasitic to LCLS-II operation
- LCLS-II beam upgrade from 4 to 8 GeV in FY27-28
- S30XL/LESA beamline installation and commissioning is ongoing (FY24-25)

S30XL Commissioning

- LDMX has been given the opportunity to help commission S30XL this summer/fall
 - Put the TS prototype from CERN testbeam in the beam
- Through the DOE SCGSR grant, I will be resident at SLAC over the summer to help with this effort!

<u>Goals</u>

- Measure beam parameters of the dark current in S30XL
- Demonstrate that the system can run parasitically to LCLS-II in Dark Current mode without any adverse impacts

Additional Future Testbeam at SLAC

- May be able to put the Hcal and TS prototypes (from CERN testbeam), along with an Ecal module in End Station A
 - Some time 2025?
- Invaluable chance to test area where LDMX will eventually reside, along with testing proper beam timing and structure

Conclusions

- Thermal DM is a simple and compelling scenario, and MeV-GeV scale is a logical place to look extension of WIMPs!
- LDMX will be able to provide world-leading sensitivity to sub-GeV DM and is able to test many LDM scenarios along the way
- Past and future testbeam efforts help to strengthen the design of LDMX
 - I will be going to SLAC this summer to join in S30XL testbeam/commissioning!!

Annihilation Cross Section Dependence

$$<\sigma v>_{relic} \sim \frac{g_D^2 g_{SM}^2 m_x^2}{m_{\varphi}^4} \qquad (m_{\varphi} \gg m_x)$$

$$m_{\varphi}^4 < \sigma v > \sim g_D^2 g_{SM}^2 m_x^2 \leq m_x^2 \qquad \text{since } g \leq O(1)$$

$$<\sigma v > \sim \alpha_D \epsilon^2 \frac{m_{\chi}^2}{m_{A'}^4} \sim y \frac{1}{m_{\chi}^2}$$
$$y = \alpha_D \epsilon^2 \frac{m_{\chi}^4}{m_{A'}^4}$$

Possible Dark Photon Signatures

Advantage of Fixed Target Missing Momentum Search

Fixed Target Missing Momentum Search Concept

- Larger yield than beam-dump experiments
 - no additional ϵ^2 DM detection penalty
- DM production identified via missing momentum and energy in detector

Feasible to cover all thermal targets with this approach!!

			1		outgoing	Vete	o Handles
When all systems are combined, background free for 4e14 EoT (with			actroblum		e ⁻		
signal efficiency of ~30-50%)			sstrantun	<u>g</u> →	γ		
10-2			ent	>	+e+e-		
10-4 10-5				<u> </u>	$\rightarrow \gamma \rightarrow \text{hadrons}$		
	Photo-1	nuclear	Muon con	nversion	$\gamma \rightarrow \mu^+ \mu^-$		
	Target-area	ECal	Target-area	ECal			
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	2.4×10^{15}	$\gamma \to 1n/K_L^0 + \text{soft}$		
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^{8}	8×10^{10}	$\rightarrow \gamma \rightarrow K^{\pm} + \text{soft}$		
Trigger, ECal total energy < 1.5 GeV	1×10^{8}	2.63×10^8	$1.6 imes 10^7$	$1.6 imes 10^8$			
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	2.34×10^8	3.1×10^4	1.5×10^8	$ \xrightarrow{K^{\pm} \text{decay}} $ in ECal		
ECal BDT (> 0.99)	9.4×10^{5}	1.32×10^5	< 1	< 1			
HCal max $PE < 5$	< 1	10	< 1	< 1	orVivu1	012 04	5525
ECal MIP tracks = 0	< 1	< 1	< 1	< 1		912.03	ack
10-15	"visible"		1		increasingly rare		🛞 Extra Tracks
10-16	backgrounds				photo-nuclear		ECal Energy
	"invisible"	" backgrou	unds $\ll 10^{\circ}$	-16 ν νi	$\overline{\nu}$ (Møller + CCQE)		ECal Feature

Jessica Pascadlo | UVA High Energy Seminar

Gain additional sensitivity from invisible meson decay channel

Relationship between ε and A' Lifetime

- As epsilon gets larger, the proper lifetime of the A' decreases
- To be able to probe untouched areas of parameter space, need to increases the reach to larger epsilon, which means decreasing the baseline

$$\gamma c \tau_{A'} = 32.5 \text{ cm} \left(\frac{E_{A'}}{4 \text{ GeV}}\right) \times \left(\frac{10^{-5}}{\epsilon}\right)^2 \left(\frac{100 \text{ MeV}}{m_{A'}}\right)^2$$

Beam for LDMX

Experimental Facilities

 \rightarrow Small upgrades to ESA systems & A-Line

LDMX Testbeam at CERN - Preliminary Results

Muon Candidate

• Clear, crisp MIP signature in Hcal

- Pion Candidate
 - MIP-like deposits followed by a cloud of hits

Advantages of 8 GeV Beam

arxiv:2308.15173

Overall reduction of PN events that pass the trigger and higher multiplicity

	Target-area	ECal	Target-area	ECal	
EoT Equivalent	2.00×10^{14}	$2.00 imes 10^{14}$	2.00×10^{14}	$2.00 imes 10^{14}$	
Trigger (front ECal energy < 3160 MeV)	7.57×10^7	4.43×10^8	$2.37 imes 10^7$	8.12×10^7	
Total ECal energy < 3160 MeV	$2.73 imes 10^7$	7.27×10^7	$1.76 imes 10^7$	6.06×10^7	
Single track with $p < 2400$ MeV/c	$3.03 imes 10^6$	$6.64 imes 10^7$	$5.32 imes 10^4$	$5.69 imes 10^7$	
ECal BDT (85% eff. $m_{A'} = 1$ MeV)	1.50×10^5	1.04×10^5	< 1	< 1	
HCal max $PE < 8$	< 1	2.02	< 1	< 1	
ECal MIP tracks = 0	< 1	< 1	< 1	< 1	

Photo-nuclear

6000

Muon conversion