THE LDMX EXPERIMENT

JEREMIAH MANS (University of Minnesota), ON BEHALF OF THE LDMX TEAM OCTOBER 25, 2016

The Thermal Relic Target

- The measurements of the cosmic microwave background establish a matter-density target for dark matter.
- If the dark matter is produced thermally, the observed abundance sets a requirement for the ratio between coupling and particle mass.

WIMPs are dead, long live the LDM?

 Various searches at the LHC are excluding the most "naive" version of the WIMP miracle: a weak-scale-coupling which implies an ~100 GeV particle

- The lighter part of the phase space is much harder to access – the coupling must be much lower, which makes it difficult to produce in a collider
- Fixed-target configurations are likely the only way to get largeenough luminosities

Missing Momentum Concept

- Disappearance measurement: Use an electron beam on an active fixed target and identify events where momentum (energy) is lost
 - Use of a moderate energy electron beam suppresses neutrino backgrounds compared with proton beams

Cartoon Guide to LDMX

- Signal definition is a low energy, moderate p_T electron and an otherwise empty calorimeter given a full-energy beam electron
 - Recoil p_T between ~80 MeV and 800 MeV
- Backgrounds come from hard interactions in the target (e.g brehmstrahlung)
 - Several challenging backgrounds arise when the forward photon has a photonuclear interaction

Requirements

- Dense, fast calorimeter able to separate multiple showers to allow high-intensity beam
 - Must also be radiation-hard
- Incoming (tagger) tracking to pinpoint photon impact position, reject off-momentum incoming particles
- Outgoing (recoil) tracking to measure recoil electron, identify closely-spaced charged particles
- MIP-sensitivity in calorimeter to identify photonuclear processes

Beam requirements and concept

 To reach the thermal relic target, O(10¹⁵ – 10¹⁶) electrons-on-target are required, at a one (few) at-atime rate: high charge, low current DASEL concept has been developed to produce such a beam using the LCLS-II Linac at SLAC in a parasitic mode of operation

The LDMX Detector Concept

- Dual purpose Magnet and Tracking
- Collimated precision tagger tracker in full field \rightarrow 10% X₀ target \rightarrow compact and precision recoil tracker in fringe field
- Si-W sampling calorimeter (ECAL)
- 40 X₀, 30 Layers, 7 modules per layer of high efficiency, high granularity calorimetry
- Scintillator-Steel sampling calorimeter (HCAL) behind and around ECAL
- 15 layers, un-segmented for simplicity : Veto any event with hadronic activity

Tracker designs based on HPS

Front-end readout boards

Silicon Sensors

- Tagging tracker: Tag incoming e-
 - Precise p and (x,y) position at target.
- Recoil tracker:
 - Associate tag to recoil
 - Determine p after the target down to 50 MeV

- Screen out straggling (off E_{Beam}) electrons
- Measure Δp across target
 - The key discriminator

Expected Tracker Performance

^{10/25/16} LDMX Experiment :: Mans

ECAL Requirements

- LDMX ECAL is effectively the beam stop for the DASEL beamline
 - High rate requirement (46 MHz particle rep rate)
 - Significant radiation load for an active detector
- Proposed solution: adopt the technology chosen for an even moreextreme case (HL-LHC endcaps)

 Fast, granular detector with precise cluster-timing capabilities is ideal for highluminosity fixed-target operation

CMS HL-LHC Endcap Calorimeter

events

Recent Testbeam Results

Hadronic Veto Calorimeter

- Critical role is in the identification of neutroncontaining backgrounds
- Technology concept is based on iron absorber and plastic scintillator read out using CMS Phase 1 SiPM-based electronics

Ongoing optimization studies including a "surrounding" HCAL to catch large-angle (45) neutrons and catch wide-angle brehmstrahlung in the target

Calorimeter performance

Studied 3 GeV photon corresponding to ~ 3.10⁹ EOT in GEANT4 simulations => ~80k of these have photonuclear reactions, rest are easily vetoed

By applying a cut of 0.15 MeV in deposited energy for the ECAL and 8 MIPs in the HCAL, we achieve a rejection factor of $\sim 10^8$ on these backgrounds

Additional design work going on for the hadron veto, as most remaining events have a leading neutron, often at large angle (>30°)

Target and Trigger

Physics trigger

- Energy sums performed using the first 16 layers of the calorimeter, combined with the input of the target scintillator
- Simulation indicates reduction factor of 2 x 10⁻⁵ possible with no inefficiency for signal

• DAQ requires a few x 10⁻⁴

Physics potential

Project Status

- DASEL beamline design is at an advanced stage
- Project is being discussed with DOE to allow installation of the DASEL beamline during the LCLS-II construction stop in 2019

- LDMX experiment design process is making good progress
- Current studies are focused on identifying photonuclear backgrounds in the calorimeters and target
- Construction schedule focused on 2020/21 operation
- Compatible with CMS endcap calorimeter construction schedule

ADDITIONAL MATERIAL

Parameter space plot with existing and planned experiments' sensitivities from Dark Sectors 2016 community report (arXiv: 1608.08632)

10/25/16

LDMX Experiment :: Mans

21