Dark Matter at Accelerators -HPS and LDMX November 20, 2021 Matt Solt, University of Virginia

The Existence of Dark Matter

- There is clear evidence for the **existence of dark matter** (DM)
- The fundamental nature/origin of DM is a **central puzzle in particle physics**
- SM can't account for DM. What are some ideas for what DM could be?

Galactic Rotation Curves

Gravitational Lensing

Cosmic Microwave Background

A Thermal Relic

• A thermal relic - simple and predictive model of dark matter (DM)

A Thermal Relic

 σv

- What is the origin of DM? Any proposed mechanism must yield 85% DM!
 - 1. Assume DM was in thermal equilibrium with SM particles
 - **2.** The universe expands and cools such that DM pairs are no longer produced
 - **3.** The universe expands and cools such that DM annihilations cease.

 $\langle \sigma v \rangle$

• The present DM density Ω_{χ} is related to the DM annihilation cross-section $\langle \sigma v \rangle$

A Thermal Relic

- A thermal relic simple and predictive model of dark matter (DM)
- WIMPs are popular, but accessible parameter space is running out of room
- Increasing interest in expanding the thermal DM search to "Light" DM in the MeV-GeV mass range

Light Dark Matter

- Simplest prediction includes a dark photon (heavy photon or A') that mixes with the SM photon
- Thermal prediction targets make attainable predictions with accelerators

Dark Photon Production

- Kinetic Mixing $\epsilon F^{\mu\nu}F'_{\mu\nu}$ anytime you can produce a photon, you can produce a dark photon. ϵ is the kinetic mixing parameter
- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production
 - A's take most of the beam energy, soft recoil electron
 - A's are very forward with small opening for decay products

Dark Photon Decays - Complimentary Searches

X

HPS Data and Results

- Results from 2015 resonance search are published Resonance search and **displaced vertex search** or 2016 are expected to publich f

Data Run	Beam Energy (GeV)	Beam Current (nA)
2015 Engineering Run	1.05	50
2016 Engineering Run	2.3	200
2019 Physics Run (Upgraded)	4.55	~150
2021 Physics Run (Upgraded)	3.7	~120

Dark Photon Visible Parameter Space

- The center is a highly motivated, yet unprobed region of parameter space
 - Small production cross-section 0
 - Short, but finite livetime 0
- $c\tau\propto \frac{}{\epsilon^2 m_{A'}}$ HPS - a fixed target precision vertexing experiment attempting to probe this
 - Large prompt QED backgrounds 0
 - A' kinematics require sensitive detector Ο components to be 0.5 mm from the beam

 $2m_e < m_{A'} < 2m_{DM}$

HPS Apparatus

- Electromagnetic Calorimeter (Ecal) provides **e+etrigger with precision timing**
- Silicon Vertex Tracker (SVT) measures trajectories of e+e- and **reconstructs mass and vertex position**
- Dipole magnet spreads e+e- pairs and provides curvature for momentum measurement

Target

Ecal

ρ-

SVT

e+

Jefferson Lab and CEBAF

- JLab (Newport News, VA) has the Continuous Electron Beam Accelerator Facility (CEBAF) that can simultaneously deliver intense **continuous** electron beams of different energies to 4 halls
- 2.2 GeV per pass up to 12 GeV and 2 ns bunch pulse
- **Provides small beam spot with small tails** (~10⁻⁶)

Prompt Trident Backgrounds

- Radiative tridents and Bethe-Heitler (BH) tridents are prompt
- Distinguishing the prompt QED tridents from displaced signal is the challenge of the analysis ~1 signal for ~1e6 prompt background

Displaced Vertex Search Event Selection

- Displaced vertex search is blinded with the selection tuned on 10% data
- Two main backgrounds from prompt trident processes: large Coulomb scatters in layer 1 of the tracker and mis-tracking

 \circ $\hfill Require strict selections on track quality and vertex quality & require layer 1 hits$

Displaced Vertex Search Backgrounds

- How much signal do we expect?
 - ~0.5 events at maximum sensitivity, not enough for A' exclusion
- Did we achieve the expected level of background necessary for a search?
 - YES! A major accomplishment (for mass greater than 70 MeV)
- What about mass less than 70 MeV?
 - This is currently under investigation, most likely a background

The Future of HPS

- Analysis from 2015/2016 motivated several simple upgrades
 - **Add a tracking layer** (Layer 0) between target and current first layer
 - Dramatically improves vertex resolution, hence the vertex reach
- Probing other models with displaced vertices such as Strongly Interacting Massive Particles (SIMPs)
- HPS is approved for 180 days of running
 - Analysis from runs in 2019 and 2021 are expected to yield exclusions, and potential discovery, of A's

LDMX

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production
 - A's take most of the beam energy
 - Only visible final state particle is a soft recoil electron

- Can probe this mechanism through a missing momentum search. We need...
 - High momentum resolution

Matt Solt

 High veto efficiency of Standard Model backgrounds

17

LDMX Concept

- Missing momentum and energy approach e^-
 - DM production identified by missing energy/momentum in detector
 - Equipped for particle ID e/gamma
 - Recoil pT used as discriminator/identifier

- 4 and 8 GeV e- beam provide by SLAC
 - Parasitically use the LCLS II beam with a dedicated transfer line (LESA)
 - Individual tagging and reconstruction of up to 1e16 electrons
 - \circ $\,$ Low current, high repetition rate 37 MHz, μ = 1 $\,$

LDMX Design

- Detector designed for high rates and high radiation doses
 - Tagging/recoil tracker: fast with high momentum resolution and large acceptance (based on HPS tracker design)
 - **Electromagnetic calorimeter**: fast, good energy resolution, and high granularity
 - **Hadronic calorimeter**: high veto efficiency of neutral hadrons

Backgrounds

Electromagnetic Calorimeter

- 40 X0 Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - Provides fast missing energy trigger
 - Dense, radiation hard, full shower containment, and high granularity

Backgrounds

22

Matt Solt

23

Ecal Veto

- More difficult to veto: Rare photon reactions that deposit low energy in the Ecal
 - Exploit longitudinal/transverse shower shapes and train a boosted decision tree (BDT)
 - High granularity Ecal enables MIP tracking

Backgrounds

Hadronic Calorimeter

- Segmented plastic/steel calorimeter
 - Readout by wavelength shifting fibers and SiPMs (based on the Mu2e Cosmic Ray Veto design)
 - Highly efficient veto for PN processes that produce neutral hadrons. Desire 1e-6 rejection
 - $\circ \quad \mbox{Side HCal rejects wide angle} \\ \mbox{bremsstrahlung and } \gamma \mbox{--} \mu \mbox{+} \mu \mbox{--}$

Phase 1: 4 GeV, 10¹⁴ electrons Phase 2: 8 GeV, 10¹⁶ electrons

arXiv:1808.05219

2020	2023	2025	2027	
Detector Development	Construction	Phase I data taking	Phase II construction & operation	

LDMX Visible Signatures

- Broad physics potential for LDMX beyond missing momentum search
 - Displaced visible decays minimal dark photon, ALPs, SIMPs, etc.
 - Electronuclear measurements for neutrino physics

Conclusion

- Thermal relic models offer plausible and predictive models of dark matter
- HPS is expected to set limits in a highly motivated and untouched region of parameter space
- LDMX can conclusively probe such models in the sub-GeV mass range through a missing momentum search

Thank You!

Signal Kinematics

- Transverse momentum of recoil election is the last veto handle
- Currently not used in veto efficiency estimates, but as a backup discriminator
- Transverse momentum can also be used to estimate/constrain DM mass scale

Tracker and Trigger Scintillator

- Tagging tracker
 - Measures incoming beam electron
- Recoil tracker (based on HPS design)
 - Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - Used an input to the missing energy trigger

33

Ecal/Hcal Vetoes

- Ecal BDT > 0.99
- Hcal max PEs is > 5

Advantage of DM Production at Accelerators

Non-relativistic vs semi-relativistic DM scattering

HPS Silicon Vertex Tracker

- SVT measures trajectories of e+e- and reconstructs mass and vertex position
- 6 layers of silicon microstrips (~0.7% radiation length per layer)
- Each layer has axial/stereo strips (100 mrad) for 3D hit position
- SVT is split to avoid "sheet of flame"; Very large scattered beam backgrounds!
- Silicon is close to beam for good forward coverage (½ mm from the beam!)
- L4-L6 are double wide for acceptance purposes

HPS A's with Longer Livetimes

- A's with longer livetimes will have e+edaughters that may miss layer 1 of the tracker
- Divide analysis into L1L1 (both particles hit L1) and L1L2 (one particles misses L1) categories
- Additional backgrounds for L1L2
 - Hit inefficiencies
 - Large Coulomb scatters in inactive Si
 - Brem conversion in tracker Si
- L1L1 category was shown previously. L1L2 was recently unblinded, but is not public yet
- L1L1 + L1L2 combined result will be the final result

Displaced Vertex Search Signal Region

HPS L1L1 Data/MC Comparison

Existing Dark Photon Constraints for Visible Decays

Displaced Vertex Search Backgrounds

- Did we achieve the expected level of background necessary for a search?
 - YES! A major accomplishment (for mass greater than 70 MeV)
- What about mass less than 70 MeV?
 - This excess is not observed in MC
 - Most likely due to mis-tracking that is not currently properly modeled in MC
 - This is currently under investigation
- How much signal do we expect?
 - ~0.5 events at peak sensitivity, not enough for A' exclusion

Limit is currently under review

Trident Backgrounds

• Radiative tridents

- Identical kinematics to A's; constitute an irreducible prompt background
- Provide reference for expected signal rate

 $\frac{d\sigma(e^-Z \to e^-Z(A' \to l^+l^-))}{d\sigma(e^-Z \to e^-Z(\gamma^* \to l^+l^-))} = \frac{3\pi\epsilon^2}{2N_{eff}\alpha} \frac{m_{A'}}{\delta m}$

• Bethe-Heitler (BH) tridents

- Softer e+e- pairs, but still dominates the signal region
- **Converted photons** in tracker or target
 - Simple cuts eliminate about 80% of these e+e- pairs with minimal signal loss
- Distinguishing the prompt QED tridents from
- displaced signal is the challenge of the analysis

Light Dark Matter

43

10

COUPP (2012)

ZEPLIN-III (2012)