
LCLS Analysis Software Note
April 29, 2016

Mikhail Dubrovin

X-ray Diffraction on Crystal for Dummies (Software Developers)

1 Quantum mechanical definitions

Einstein’s relativistic energy-momentum equation between particle energy, E, mo-
mentum, p, and rest invariant mass, m, is

E2 = p2c2 +m2c4,

where c is a speed of light in vacuum. In case of photon m = 0 and this equation is
reduced to

E = pc. (1)

Photon energy E associated with time structure of the electromagnetic wave and is
expressed in terms of its oscillation priod τ , or frequency ν = 1/τ , or cyclic frequency
ω = 2πν as

E =
h

τ
≡ hν ≡ h̄ω, (2)

using Planck constant h or its reduced value h̄ = h/2π.
Photon momentum p associated with space structure of the electromagnetic wave

and is expressed in terms of its oscillation wavelength, λ = cτ , or wave number (vector),
k = 2π/λ, or its reduced value, k̄ ≡ k/2π = 1/λ,

p =
h

λ
≡ hk̄ ≡ h̄k, (3)

By definition E and p fulfill Eqn.1,

E =
h

τ
=

hc

τc
=

hc

λ
= pc. (4)

2 Wavelength for photon energy

PDG 2014 lists values for reduced Planck constant and speed of light in vacuum

h̄ = 6.58211928(15)× 10−16 eV s,

c = 299792458 m/s (exact).

Speed of light in vacuum is an exact value, because of the meter definition; “The meter
is the length of the path traveled by light in vacuum during time interval of 1/299792458
of a second.”

Eqn.4 can be used to express wavelength through the photon energy,

λ[nm] =
hc

E
=

2πh̄[eV s] · c[m/s] · 109[nm/m]

E[eV]
=

1239.8493[eV nm]

E[eV]
.

Note, that 1m=109nm=1010Å, so 1nm=10Å.

3 Wave vector

There may be two equivalent definitions for the wave vector, associated with photon
momentum, ~p, pointing in the direction of photon propagation, “physics” and “crystallo-
grapher’s”

~p = h̄~k ≡ h~̄k,

Magnitude of the wave vector is a wave number

k = |~k| = 2π

λ
, k̄ ≡ k

2π
=

1

λ
.

4 Scattering vector

k’

k

q
2θ

Figure 1: Scaterring vector.

Scattering vector ~q is a difference between
final and initial wave vectors in the process
of photon scattering

~q = ~k′ − ~k, where |~k′| = |~k|.

If angle between vectors ~k′ and ~k is 2θ,
as shown in Fig. 1, the value of scattering
vector is

q = 2|k| sin θ, (5)

that can be expressed in terms of “physics” and “crystallographer’s” units as

qphysics =
4π

λ
sin θ, qcryst =

2

λ
sin θ. (6)

5 Bragg’s law

k k’

d

θ

2θ

θ

Figure 2: Bragg’s reflection.

Constructive interference is observed
when the light path difference shown by
the bold line in Fig. 2 is folded in number
of wavelength, nλ,

2d sin θ = nλ,

then inverse distance between crystal
nodes, 1/d, is

n

d
=

2

λ
sin θ = qcryst ≡

qphysics
2π

.

6 Reciprocal space units

From Sections 4 and 5 it is clear, that we have to use consistent units for reciprocal space
and q

• “crystallographer’s” units ∝ 1

d
, k̄ = 1

λ
, qcryst = 2k̄ sin θ = 2

λ
sin θ

• “physics” units ∝ 2π
d
, k = 2π

λ
, qphysics = 2k sin θ = 4π

λ
sin θ

7 Bravias lattice

Bravias lattice defines node position ~R through the set of primiteve vectors, for exampe
in 3-d space ~a1, ~a2, ~a3, and associated Muller indices (h, k, l) using equation

~R = h~a1 + k~a2 + l~a3. (7)

Note, h is an index, not a Planck constant here...

8 Lattice primitive vectors in 3-d space

Lattice primitive vectors can be defined in 3-d and in reciprocal space... In 3-d space we
use lattice crystal cell edge length and angles between crystal axes a, b, c, α, β, γ to define
lattice primitive vectors ~a1, ~a2, ~a3 oriented along crystal cell edges/axes. Essential code
which defines lattice primitive vectors in 3-d space:

alp, bet, gam = math.radians(alpha), math.radians(beta), math.radians(gamma)

calp, cbet, cgam = math.cos(alp), math.cos(bet), math.cos(gam)

salp, sbet, sgam = math.sin(alp), math.sin(bet), math.sin(gam)

cx = -c*cbet

cy = c*calp*sgam

cz = math.sqrt(c*c - cx*cx - cy*cy)

a1 = (a, 0, 0)

a2 = (-b*cgam, b*sgam, 0)

a3 = (cx, cy, cz)

9 Lattice primitive vectors in reciprocal space

Lattice primitive vectors in reciprocal space can be expressed in terms of “crystallogra-
pher’s” definition ∝ 1/d,

~b1 =
[~a2 × ~a3]

~a1 · [~a2 × ~a3]
, ~b2 =

[~a3 × ~a1]

~a2 · [~a3 × ~a1]
, ~b3 =

[~a1 × ~a2]

~a3 · [~a1 × ~a2]
, (8)

or in terms of “physics” definition ∝ 2π/d, the same Eqn.8 but with factor 2π.

10 Ewald’s sphere

θ

θ

q=1/d
k’

kk

Figure 3: Bragg’s reflection and Ewald’s
sphere.

If the photon energy is conserving in the
process of scattering (elastic scattering) as
considered in Sec. 4 the length of the scat-
tered wave vector stays the same

|~k′| = |~k|.

All possible tip-points of vector ~k′ belong
to sphere of radius |~k| which is called
Ewald’s sphere. Combining this obser-
vation with Bragg’s law from Sec. 5 we
come to conclusion that interference is ob-
served for lattice nodes in reciprocal space
on Ewald’s sphere.

θ

θ

k’

k’

k

k’

kk

q=1/d

Figure 4: Bragg’s reflection and Ewald’s
sphere for complete dummies.

11 Look-up table for indexing

Assuming 2- or 3-d model of lattice we may evaluate lattice primitive vectors like in Sec. 8
and convert them in reciprocal spase using Eqn. 8. Then cycling over Muller indices h, k, l
in Eqn. 7 we may generate Bravias lattice of any size in reciproal space.

Then we may put the reciprocal lattice origin on the Ewald’s sphere, like shown in
Fig. 3. For each 3-d lattice orientation we may find which nodes are on the Ewald’s sphere
within toleranse/resolution parameter. This algorithm is implemented in cxif5315/make-index-tabl
It generates look-up table with content like

file name: ./v02-lut-cxif5315-r0169-2016-02-03T15:10:48.txt

photon energy = 6003.1936 eV

wavelength = 2.0653 A

wave number/Evald radius k = 1/lambda = 0.484187 1/A

sigma_ql = 0.001453 1/A (approximately = k * <pixel size>/

sigma_qt = 0.000484 1/A (approximately = k * <pixel size>/<sample-to-detector distance> = k*100um/100mm)

3*sigma_ql = 0.004358 1/A

3*sigma_qt = 0.001453 1/A

Triclinic crystal cell parameters:

a = 18.55 A

b = 27.19 A

c = 4.86 A

alpha = 90.00 deg

beta = 90.00 deg

gamma = 78.47 deg

3-d space primitive vectors:

a1 = (18.550000, 0.000000, 0.000000)

a2 = (-5.435624, 26.645524, 0.000000)

a3 = (0.000000, 0.000000, 4.860100)

reciprocal space primitive vectors:

b1 = (0.053908, 0.010997, -0.000000)

b2 = (0.000000, 0.037530, 0.000000)

b3 = (0.000000, -0.000000, 0.205757)

...

beta 0.00 omega 14.00 degree

index beta omega h k l dr[1/A] R(h,k,l) qv[1/A] qh[1/A] P(omega)

29 0.00 14.00 -3 -6 0 0.001372 0.304642 0.000000 -0.304208 0.640317

29 0.00 14.00 -2 -5 0 0.003480 0.235743 0.000000 -0.234875 0.056681

29 0.00 14.00 -1 -3 0 -0.003649 0.134832 0.000000 -0.135294 0.042615

29 0.00 14.00 0 6 0 -0.002119 0.225179 0.000000 0.225663 0.345084

beta 0.00 omega 14.50 degree

index beta omega h k l dr[1/A] R(h,k,l) qv[1/A] qh[1/A] P(omega)

30 0.00 14.50 -3 -6 0 0.003889 0.304642 0.000000 -0.303401 0.027767

30 0.00 14.50 -1 -3 0 -0.002481 0.134832 0.000000 -0.135156 0.232658

30 0.00 14.50 0 6 0 -0.004036 0.225179 0.000000 0.226087 0.021077

12 Scattering vector in 3-d space

In applications we need to evaluate scattering vector components from known initial wave
vector, location of the Interaction Point (IP), and assuming that scattered photon crosses
certain point P in 3-d space. To this end, it is convenient to use coordinate system with
origin in IP, one axis oriented along the initial wave vector (longitudinal direction), and
point P in 3-d space defined through the longitudinal and transverse (tangent) components
P (P‖, P⊥). Using this definition we may find distance from IP to P , longitudinal and
tangent components of the scattering vector

L =
√

P 2

‖ + P 2

⊥, (9)

q‖ = |k|
(

P‖

L
− 1

)

, (10)

q⊥ = |k|P⊥

L
. (11)

13 Scattering vector from detector data

p
x,y

x, y

s
k’

L

IP zR
k

D
et

ec
to

r

Figure 5: Scaterring vector definition from
point on image.

~s = ~k′ − ~k, where |~k′| = |~k|,

L =
√

R2 + p2x + p2y,

sx,y = |k|px,y
L

,

sz = |k|
(

R

L
− 1

)

.

Python method evaluates normalized scattering vector components ~s/|k| for the 3-d
space point (detector pixel)

from pyimgalgos.FiberAngles recipnorm

(qh_to_xy - its variation with pretty bad name...)

14 Fraser’s transformation

Fraser’s transformation converts image pixel coordinates px,y to the 2-d presentation of
scattering vector s with horizontal and vertical components

(sH , sV) = f ·
(

sx
|sx|

√

s2x + s2z, sy

)

(12)

where f is a scale factor to convert scattering vector components to image.

15 Rotation for angle β

We define β as a fiber rotation angle around horizontal axis, parallel to the axis x in the
image.

D(β) =







1 0 0
0 cos β sin β
0 − sin β cos β





 (13)

For points on equator second (y) component should be zero after rotation,

(

1− R

L

)

sin β =
py
L

cos β (14)

tanβ =
py

L−R
,

or in scale of R

tanβ =
y√

1 + x2 + y2 − 1
, where x = px/R, y = py/R. (15)

16 Evaluation of angle ϕ

Any point from equatorial region should have the same tan β in Eqn.15. Then, for two
points (x1, y1) and (x2, y2) rotated by angle ϕ

x1 sinϕ+ y1 cosϕ

d1
=

x2 sinϕ+ y2 cosϕ

d2
, where di =

√

1 + x2
i + y2i − 1

that brings us to

tanϕ =
y2d1 − y1d2
x1d2 − x2d1

(16)

Python method:

from pyimgalgos.FiberAngles calc_phi

17 Evaluation of angle β

When angle ϕ is known, then for each point from equatorial region angle beta can be
defined using Eqn.15,

tan β =
x sinϕ+ y cosϕ√
1 + x2 + y2 − 1

(17)

Python method:

from pyimgalgos.FiberAngles calc_beta

18 Evaluation of y(x, ϕ, β) for l = 0 lattice nodes

Eqn.14 transformed to Eqn.17 can be used to evaluate dependence y(x, ϕ, β). Applying
notations

t = tan β, s =
sinϕ

t
, and c =

cosϕ

t
(18)

it can be re-written as
√

1 + x2 + y2 = xs + yc+ 1 (19)

and further reduced to the form of quadratic equation

y2 + 2By + C = 0, (20)

which has two solutions
y = −B ±

√
B2 − C, (21)

where

B =
c(xs + 1)

c2 − 1
and C =

x2(s2 − 1) + 2xs

c2 − 1
. (22)

Correct sign of the root in Eqn.21 can be choosen from requitement that y(x = 0) = 0.
In this case C = 0 and this requirement with Eqn.21 gives

y = −B ± |B| = 0,

meaning that sign of the root and parameter B should be the same. Eqn.21 can be used
to fit positions of peaks in equatorial region and get angles ϕ and β from fit parameters.
In case of sin β = 0 or t = 0 Eqn.17 gives

y = −x tanϕ. (23)

Python method which parametrizes this solution and standard fitting method can be
imported as

from pyimgalgos.FiberAngles import funcy_l0

from scipy.optimize import curve_fit

19 Evaluation of y(x, ϕ, β) for l = 1 lattice nodes

Peaks in Arc region are associated with X-ray scattering on l = 1 lattice nodes. In this
case Eqn.14 needs to be changed. Peak vertical positions for l = 1 lattice nodes on image
after rotations ϕ and β should be located along the line separated by distance D from
equatorial plane

(const.)
D

R
=

py
L

cos β +
(

R

L
− 1

)

sin β, (24)

where we use normalized value D/R, the same way like we do for px and py later. Multi-
plying Eqn.24 by L/(R sin β) and re-grouping terms we get

L

R

(

1 +
D

R sin β

)

=
py

R tan β
+ 1. (25)

Substituting py with their rotated value px sinϕ+py cosϕ, (like in Eqn.17), using notations

x =
px
R
, y =

py
R
, t = tan β, s =

g sinϕ

t
, c =

g cosϕ

t
, and g =

(

1+
D

R sin β

)−1

, (26)

we get equation
L

R
≡

√

1 + x2 + y2 = xs+ yc+ g, (27)

which can be reduced to the form of quadratic Eqn.20 with solution Eqn.21, where

B =
c(xs+ g)

c2 − 1
and C =

x2(s2 − 1) + 2xsg + g2 − 1

c2 − 1
. (28)

In case of sin β = 0 the last term of Eqn.24 disappears,

D

R
=

py
L

cos β, or
L

R
=

px sinϕ+ py cosϕ

R

R

D
cos β (29)

which brings us to Eqn. 27 with changed notations

s|β=0
=

R

D
sinϕ cos β, c|β=0

=
R

D
cosϕ cos β, and g|β=0

= 0. (30)

Python method which parametrizes this solution and standard fitting method can be
imported as

from pyimgalgos.FiberAngles import funcy_l1_v1

from scipy.optimize import curve_fit

20 References

1. Package pyimgalgos

2. Package cxif5315

