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X-ray Diffraction on Crystal for Dummies (Software Developers)

1 Quantum mechanical definitions

Einstein’s relativistic energy-momentum equation between particle energy, F, mo-
mentum, p, and rest invariant mass, m, is

E2 :p2C2 —|—m2c4,

where ¢ is a speed of light in vacuum. In case of photon m = 0 and this equation is

reduced to
E = pc. (1)
Photon energy FE associated with time structure of the electromagnetic wave and is

expressed in terms of its oscillation priod 7, or frequency v = 1/7, or cyclic frequency
w = 27TV as

E:ﬁEhl/EfLw, (2)

-
using Planck constant h or its reduced value h = h/27.

Photon momentum p associated with space structure of the electromagnetic wave
and is expressed in terms of its oscillation wavelength, A = ¢7, or wave number (vector),
k = 2w/, or its reduced value, k = k/27 = 1/,

p="= =hk=hk, (3)

By definition £ and p fulfill Eqn.1,

h  hc hc
E=—=—=—=npe. 4
T ore A e (4)

2 Wavelength for photon energy

PDG 2014 lists values for reduced Planck constant and speed of light in vacuum
h = 6.58211928(15) x 107 eV s,
¢ =299792458 m/s (exact).

Speed of light in vacuum is an exact value, because of the meter definition; “The meter
is the length of the path traveled by light in vacuum during time interval of 1/299792458
of a second.”

Eqn.4 can be used to express wavelength through the photon energy,
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Note, that 1m=10"nm=10""A4, so Inm=10A.



3 Wave vector

There may be two equivalent definitions for the wave vector, associated with photon
momentum, p, pointing in the direction of photon propagation, “physics” and “crystallo-
grapher’s”

p = hk = hE,
Magnitude of the wave vector is a wave number

- 27 k 1

4 Scattering vector

Scattering vector ¢'is a difference between
final and initial wave vectors in the process
of photon scattering

q= K —E, where |lc_”| = |E|

If angle between vectors K and k is 20,
as shown in Fig. 1, the value of scattering
vector is

Figure 1: Scaterring vector. q = 2|k[sin®, (5)

that can be expressed in terms of “physics” and “crystallographer’s” units as

T 2
Qphysics = 7 S ‘9, Geryst = X sin 0. (6)
5 Bragg’s law

Constructive interference is observed
when the light path difference shown by
the bold line in Fig. 2 is folded in number
of wavelength, nA,

2dsinf = n\,

then inverse distance between crystal
nodes, 1/d, is

. _ Qphysics
= —sinf = Geryst = .

A 2

aul3

Figure 2: Bragg’s reflection.



6 Reciprocal space units

From Sections 4 and 5 it is clear, that we have to use consistent units for reciprocal space
and ¢

e “crystallographer’s” units o< =, k = %, Qeryst = 2Kk sinf = 2 sin 0

A

Ul

e “physics” units o 27”, k= ZT“, Qphysics = 2ksin = 47” sin 6

7 Bravias lattice

Bravias lattice defines node position R through the set of primiteve vectors, for exampe
in 3-d space ay, ds, d3, and associated Muller indices (h, k, ) using equation

R = hiy + kdy + 1ds. (7)

Note, h is an index, not a Planck constant here...

8 Lattice primitive vectors in 3-d space

Lattice primitive vectors can be defined in 3-d and in reciprocal space... In 3-d space we
use lattice crystal cell edge length and angles between crystal axes a, b, ¢, a, 3, v to define
lattice primitive vectors @, do, d3 oriented along crystal cell edges/axes. Essential code
which defines lattice primitive vectors in 3-d space:

alp, bet, gam = math.radians(alpha), math.radians(beta), math.radians(gamma)
calp, cbet, cgam = math.cos(alp), math.cos(bet), math.cos(gam)
salp, sbet, sgam = math.sin(alp), math.sin(bet), math.sin(gam)

cx = —c*cbet

Ccy = c*calp*sgam

cz = math.sqrt(c*c - cx*cx - cy*cy)
al = (a, 0, 0)

a2 = (-bxcgam, b*sgam, 0)

a3 = (cx, cy, cz)

9 Lattice primitive vectors in reciprocal space

Lattice primitive vectors in reciprocal space can be expressed in terms of “crystallogra-
pher’s” definition o 1/d,

- [dy % a3] o [d3 X @] 7o [dy X ]
1= = 5= = — 57

0,1'[6_1:2><C_1:3]7 2_62'[63X61]’ 3_6_1:3'[6_1:1><62]’

(8)

or in terms of “physics” definition o< 27 /d, the same Eqn.8 but with factor 2.



10 Ewald’s sphere

Figure 3: Bragg’s reflection and Ewald’s
sphere.

Figure 4: Bragg’s reflection and Ewald’s
sphere for complete dummies.

If the photon energy is conserving in the
process of scattering (elastic scattering) as
considered in Sec. 4 the length of the scat-
tered wave vector stays the same

'] = |kl.

All possible tip-points of vector K belong
to sphere of radius |k| which is called
Ewald’s sphere. Combining this obser-
vation with Bragg’s law from Sec. 5 we
come to conclusion that interference is ob-
served for lattice nodes in reciprocal space
on Ewald’s sphere.



11 Look-up table for indexing

Assuming 2- or 3-d model of lattice we may evaluate lattice primitive vectors like in Sec. 8
and convert them in reciprocal spase using Eqn. 8. Then cycling over Muller indices h, k, [
in Eqn. 7 we may generate Bravias lattice of any size in reciproal space.
Then we may put the reciprocal lattice origin on the Ewald’s sphere, like shown in
Fig. 3. For each 3-d lattice orientation we may find which nodes are on the Ewald’s sphere
within toleranse/resolution parameter. This algorithm is implemented in cxif5315/make-index-te
It generates look-up table with content like

# file name: ./v02-lut-cxif5315-r0169-2016-02-03T15:10:48.txt

# photon energy = 6003.1936 eV

# wavelength = 2.0653 A

# wave number/Evald radius k = 1/lambda = 0.484187 1/A
# sigma_ql = 0.001453 1/A (approximately = k * <pixel size>/
# sigma_qt = 0.000484 1/A (approximately = k * <pixel size>/<sample-to-detector distance> = k*100um/100mm)
# 3*sigma_ql = 0.004358 1/A

# 3xsigma_qt = 0.001453 1/A

# Triclinic crystal cell parameters:

# a=18.55 A

# b=27.19 A

# c=4.86 A

# alpha = 90.00 deg

# beta = 90.00 deg

# gamma = 78.47 deg

# 3-d space primitive vectors:

# a1l = ( 18.550000, 0.000000, 0.000000)

# a2 = ( -5.435624, 26.645524, 0.000000)

# a3 = (. 0.000000, 0.000000, 4.860100)

# reciprocal space primitive vectors:

# bl = ( 0.053908, 0.010997, -0.000000)

# b2 = ( 0.000000, 0.037530, 0.000000)

# b3 = ( 0.000000, -0.000000, 0.205757)

# beta 0.00 omega 14.00 degree

# index beta omega h k 1 dr[i1/A] R(h,k,1) qv[1/A] qh[1/A] P(omega)
29 0.00 14.00 -3 -6 0 0.001372 0.304642 0.000000 -0.304208 0.640317
29 0.00 14.00 -2 -5 0 0.003480 0.235743 0.000000 -0.234875 0.056681
29 0.00 14.00 -1 -3 0 -0.003649 0.134832 0.000000 -0.135294 0.042615
29 0.00 14.00 0 6 0 -0.002119 0.225179 0.000000 0.225663 0.345084

# beta 0.00 omega 14.50 degree

# index beta omega h k 1 dr[1/A] R(h,k,1) qv[1/A] qh[1/A] P(omega)
30 0.00 14.50 -3 -6 0 0.003889 0.304642 0.000000 -0.303401 0.027767
30 0.00 14.50 -1 -3 0 -0.002481 0.134832 0.000000 -0.135156 0.232658
30 0.00 14.50 0 6 0 -0.004036 0.225179 0.000000 0.226087 0.021077



12 Scattering vector in 3-d space

In applications we need to evaluate scattering vector components from known initial wave
vector, location of the Interaction Point (IP), and assuming that scattered photon crosses
certain point P in 3-d space. To this end, it is convenient to use coordinate system with
origin in IP, one axis oriented along the initial wave vector (longitudinal direction), and
point P in 3-d space defined through the longitudinal and transverse (tangent) components
P(P,P.). Using this definition we may find distance from IP to P, longitudinal and
tangent components of the scattering vector

L=\/Pf+ P, (9)
o =(L-1), (10)

P
q1L = |]€|Tl (11)

13 Scattering vector from detector data
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Figure 5: Scaterring vector definition from s, = |k| (f — 1).

point on image.

Python method evaluates normalized scattering vector components §/|k| for the 3-d
space point (detector pixel)

from pyimgalgos.FiberAngles recipnorm
(gh_to_xy - its variation with pretty bad name...)

14 Fraser’s transformation

Fraser’s transformation converts image pixel coordinates p,, to the 2-d presentation of
scattering vector s with horizontal and vertical components

(smnsv) = - (/e 2 s,) (12)

where f is a scale factor to convert scattering vector components to image.




15 Rotation for angle

We define ( as a fiber rotation angle around horizontal axis, parallel to the axis x in the
image.
1 0 0
D(B)=1| 0 cosp sinf (13)
0 —sinf cosp

For points on equator second (y) component should be zero after rotation,

R
(1 — f) sin f = % cos (3 (14)
Py
t pr—
an 3 TR
or in scale of R
Yy

tan f = where z =p,/R, y=p,/R. (15)

Vi
16 Evaluation of angle ¢

Any point from equatorial region should have the same tan 8 in Eqn.15. Then, for two
points (x1,y1) and (x2,ys2) rotated by angle ¢

xlsimp;rylcosgo::cgsin<p;ry2cos<p’ where di = \/1+ 22 4% —1
1 2

that brings us to

fam ¢ = Yodi — yrdy (16)

I‘ldg - l’gdl
Python method:

from pyimgalgos.FiberAngles calc_phi

17 Evaluation of angle

When angle ¢ is known, then for each point from equatorial region angle beta can be
defined using Eqn.15,

T sin p + Yy cos ¢

VIita?+y? -1

tan g =

(17)
Python method:

from pyimgalgos.FiberAngles calc_beta



18 Evaluation of y(z, ¢, 5) for | = 0 lattice nodes

Eqn.14 transformed to Eqn.17 can be used to evaluate dependence y(z, ¢, 3). Applying
notations )
_ sing

cos
t=tanpg, s= and ¢ = L

t t

Vit +yi=xs+yc+1 (19)

and further reduced to the form of quadratic equation

(18)

it can be re-written as

y?> +2By+C =0, (20)

which has two solutions

y—-B+VET—C, (21)

where

c(zs+1) and O = (s — 1)+ 21’8.

-1 -1
Correct sign of the root in Eqn.21 can be choosen from requitement that y(z = 0) = 0.
In this case C' = 0 and this requirement with Eqn.21 gives

B= (22)

y=—B+|B| =0,

meaning that sign of the root and parameter B should be the same. Eqn.21 can be used
to fit positions of peaks in equatorial region and get angles ¢ and 3 from fit parameters.
In case of sinf =0 or t =0 Eqn.17 gives

y = —xtan . (23)

Python method which parametrizes this solution and standard fitting method can be
imported as

from pyimgalgos.FiberAngles import funcy_10
from scipy.optimize import curve_fit



19 Evaluation of y(z, ¢, 5) for | = 1 lattice nodes

Peaks in Arc region are associated with X-ray scattering on [ = 1 lattice nodes. In this
case Eqn.14 needs to be changed. Peak vertical positions for [ = 1 lattice nodes on image
after rotations ¢ and g should be located along the line separated by distance D from
equatorial plane

(const.)% = % cos B + (% - 1) sin f3, (24)

where we use normalized value D/R, the same way like we do for p, and p, later. Multi-
plying Eqn.24 by L/(Rsin ) and re-grouping terms we get

£<1+ = ) =P 4
R Rsin Rtan

(25)

Substituting p, with their rotated value p, sin p+p, cos ¢, (like in Eqn.17), using notations

 Da Dy B _ gsingp _ gcosy _( D )‘1
=== =L t=t = = d g=11 26
we get equation

L

Ezw/l+x2+y2:xs+yc+g, (27)

which can be reduced to the form of quadratic Eqn.20 with solution Eqn.21, where

b= C(:;_Jrf]) and €= T 1); ixlsg to L (28)
In case of sin 8 = 0 the last term of Eqn.24 disappears,
% :%cosﬁ, or % = pxsingo—li%pycosgogcos (29)
which brings us to Eqn. 27 with changed notations
R . R
8|0 = 5 sinpcos B, ¢y = T Cospcos B, and glz_, =0. (30)

Python method which parametrizes this solution and standard fitting method can be
imported as

from pyimgalgos.FiberAngles import funcy_11_vil
from scipy.optimize import curve_fit

20 References
1. Package pyimgalgos

2. Package cxif5315



