HPS Winter 2016 Run Week 3 Update

Matt Solt

SLAC National Accelerator Laboratory

mrsolt@slac.stanford.edu

February 23, 2016

-∢ ≣ →

SVT Run Overview

- Successfully timed in late Friday night/Saturday morning (Sho guessed the latency correctly the first time)
- Successfully moved the SVT to 0.5 mm Saturday morning
- Successfully performed APV pulse shape timing studies, HV bias scan for layer 1 hybrids, 8 ns delay scans, trigger scans, and current scans
- Successfully checked tracking with tracking recon monitoring app
 - Track/cluster matching is not great in monitoring app. SVT phase is not correct.
- Decided to perform production runs at the setting Isha = 70 and VFS = 0 since it showed all around improvement to nominal
- Minor DAQ issues, manual is being updated to try to avoid future problems

FSD Halo Counter Rates while Lowering SVT

- Note that bottom 1.5 mm was not at 200 nA yet
- Many FSD Halo Counter trips at bottom 0.7 mm. Raised rate limit to 185 kHz.

-∢ ≣ →

Occupancy and Current While Lowering SVT

(日)

æ

Stanford

- ∢ ⊒ →

Run Week 3 Update

Occupancy 0.5 mm Nominal

Run Week 3 Update

Occupancy 0.5 mm Front Layer Nominal

Max Sample Number 0.5 mm Nominal

Max Sample Number

Run Week 3 Update

SVT Trigger Timing 0.5 mm Nominal

SVT-trigger timing top-bottom

Run Week 3 Update

Links to Logbook Plots (SVT at 0.5 mm)

- Isha = 34, VFS = 60 (nominal)
- ▶ Isha = 70, VFS = 0
- ▶ Isha = 100, VFS = 0
- ▶ Isha = 255, VFS = 0
- Several runs dissapeared to tape before I could grab them including the current scans and Isha = 120

Pulse Shape Timing Results

- Isha = 70, VFS = 0 shows overall improvement in SVT performance
 - Pileup reduction and timing resolution improvement
- Results below are the average over all channels and all hybrids (except slot side) of the RMS of track dt histograms in tracking recon monitororing app (about 10000 events)
- There are still things I need to understand about these results

			Real Beam			
Run	Isha	VFS	T0 Res Avg (ns)	Improvement		
7373	34	60	3.25	0.0%		
7455	70	0	3.07	6.0%		
7404	100	0	3.66	-11.1%		
7408	120	0				
7456	255	0	3.79	-14.3%		

Time Resolution Detailed Results

Run	Hybrid			TO Dec (no)	Dum	Hybrid			TO D ()
	Layer	Axial/Stereo	Slot/Hole	TO Kes (hs)	кun	Layer	Axial/Stereo	Slot/Hole	TO Kes (ns)
	14	Axial	-	4.08			Axial	-	3.97
	11	Stereo	-	4.03		11	Stereo	-	3.58
		Axial	-	4.4			Axial	-	4.22
		Stereo	-	4.34		10	Stereo	-	4.29
	24	Axial	-	3.14		24	Axial	-	2.97
	Zt	Stereo	-	2.98		Zt	Stereo	-	2.95
	26	Axial	-	3.56		26	Axial	-	3.35
	20	Stereo	-	3.41		20	Stereo	-	3.38
	2+	Axial	-	3		2+	Axial	-	2.81
	51	Stereo	-	3.13	7455 Isha = 70 VFS = 0	51	Stereo	-	2.8
7272	26	Axial	-	3.2		3b	Axial	-	3.12
/3/3	30	Stereo	-	3.26			Stereo	-	3.12
VEC - 60	4+	Axial	hole	2.82		4t	Axial	hole	2.68
VF3 = 00	41	Stereo	hole	3.01			Stereo	hole	2.77
	4b	Axial	hole	3.07		4b	Axial	hole	2.73
		Stereo	hole	3.08			Stereo	hole	2.78
	5+	Axial	hole	2.9		5+	Axial	hole	2.85
	51	Stereo	hole	2.96		51	Stereo	hole	2.74
	56	Axial	hole	3.05		Sh	Axial	hole	2.91
	50	Stereo	hole	2.97		50	Stereo	hole	2.99
	6t	Axial	hole	2.8		6t	Axial	hole	2.69
		Stereo	hole	2.93			Stereo	hole	2.64
	6h	Axial	hole	3		6h	Axial	hole	2.65
	00	Stereo	hole	2.84		00	Stereo	hole	2.57

æ

イロン イロン イヨン イヨン

Time Resolution Detailed Results Continued)

Rup	Hybrid			Burn	Hybrid			TO Bog (pg)	
Null	Layer	Axial/Stereo	Slot/Hole	TO Kes (IIS)	TO Res (ns) Run	Layer	Axial/Stereo	Slot/Hole	TO Res (ns)
7404 Isha = 100 VFS = 0	1t	Axial	-	4.17	7456 Isha = 255 VFS = 0	1t	Axial	-	4.22
		Stereo	-	4.13			Stereo	-	3.98
	1b	Axial	-	4.68		1b	Axial	-	4.12
		Stereo	-	4.7			Stereo	-	4.14
	2t	Axial	-	3.31		2t	Axial	-	3.67
		Stereo	-	3.45			Stereo	-	3.77
	2b	Axial	-	3.72		2b	Axial	-	3.84
		Stereo	-	4.07			Stereo	-	3.8
	3t	Axial	-	3.34		3t	Axial	-	3.73
		Stereo	-	3.25			Stereo	-	3.82
	3b	Axial	-	3.79		3b	Axial	-	3.92
		Stereo	-	3.73			Stereo	-	3.88
	4t	Axial	hole	3.92		4t	Axial	hole	3.57
		Stereo	hole	3.22			Stereo	hole	3.49
	4h	Axial	hole	3.48		4b	Axial	hole	3.62
	40	Stereo	hole	3.6			Stereo	hole	3.54
	5t	Axial	hole	3.48		5t	Axial	hole	4.1
		Stereo	hole	3.39			Stereo	hole	3.85
	5b	Axial	hole	3.4		5b	Axial	hole	3.91
		Stereo	hole	3.6			Stereo	hole	3.75
	6t	Axial	hole	3.06		6t	Axial	hole	3.56
		Stereo	hole	3.31			Stereo	hole	3.46
	6h	Axial	hole	3.42		6b	Axial	hole	3.69
	00	Stereo	hole	3.51			Stereo	hole	3.59
T0 Res Avg			3.66	T0 Res Avg			3.79		

Isha = 34, VFS = 60 Tracking Time Resolution

Isha = 70, VFS = 0 Tracking Time Resolution

Run Week 3 Update

Isha = 100, VFS = 0 Tracking Time Resolution

Track Hit dt

Isha = 255, VFS = 0 Tracking Time Resolution

Stanford

æ

・ロト ・回ト ・ヨト ・ヨト

Isha = 34, VFS = 60 Pileup

First sample distributions (pedestal shifts, MAX_SAMPLE>=4)

Run Week 3 Update

Isha = 70, VFS = 0 Pileup

Run Week 3 Update

$\mathsf{Isha} = 100, \, \mathsf{VFS} = 0 \, \mathsf{Pileup}$

Run Week 3 Update

Isha = 255, VFS = 0 Pileup

First sample distributions (pedestal shifts, MAX SAMPLE>=4) module_111_haffenedale_anat_nermet http://amale.if/AX.301911.com 43 Instanto, 111, halfmarkala, starting series, brist semiala (PAX, 35(2)) (1999) - 42 module_121_half-module_amal_server first screening (RAS_RAP Street all) module_COL_ballmodule_commonser first scenade [BAX, SAR FIRM ed] mailabe_CAL_hallowsdate_anal_server feed scrude \$255, 3529 Found? kaYnodale, cheroe, consi scende (NAE, SAMPLE) and 5.000 4,303 10,000 * 010 -10.050 4,000 4919 -5 101 2.001 2.010 3,000 \$30 1.101 L.\$30 2.00 SC0 1.000 2.500 2.10 100 1.000 1.100 1.0 dostal INAX_SANFLES=4[JADC counts] edestal (MAX_SAMPLE>=4) [ADC_counts] edestal (MAX_SAMPLES=4) [ADC ounts] edestal [MAX_SAMPLES=4] [ADC counts] edestal (MAX_SAMPLES=4) [ADC counts] dostal (MAX_SAMPLE>=4) (ADC counts) module_12k_ballenshale_anal_server1 kedi somde 1853,35889 Firm 42 module_11 k_ball-module_star m_sressed http://www.left.MAR_NAR_PLAN_#40 mobile_14k_balferariale_sterres_server first somele 1963_35200 to wait amp 5.000 8.050 6.010 10.001 6.203 4.010 4,000 4.000 5.000 5.101 2,010 2.202 2 000 2.000 3.5 distal MAX SAMPLEX-41 (ADC control elocation (MAX SAMPLEX-4) (ADC control elocation (MAX SAMPLEX module_tat_baltendate_anal_stat_se rel_fiest_sample_(NAS_SAME_Pa_mat 144_builtenninde_sterren_shit_so level somple 1958X 347191 Page 43 rendale_UN_ballwoolabe_actal_stat_se arit_ficst sample (2003_30200 Pa = 4 DAL half-molifier storen status helt sample 1832, SAR (1999-44) inst sample ORAX, MANPIPERED 690 400 610 401 5,000 -100 4,000 201 210 2 000 1010 1510 2.14 501 1.000 1.510 2.10 500 1.101 3.503 3.01 edestal IMAX SAMPLE> #4 JADC county] instal (MAX SAMPLE>w4) [ADC countal edestal (MAX SAMPLEN #4) IADC countal destal IMAX SAMPLE> #4 IAOC county! cleated (MAX SAMPLE>=+4) [ADC counted edeptal (MAX SAMPLENeed) IADC counts madale, LHt, halfmadale, attal, hole, sena pr2 - first sample (NAR, SAMPLE) - 41 motule LSt, harmodale, anial, hole, sens medule_LOt_halfmodule_starso_hole_se naur0 - first sample (NAX_SANING> - 11 nodule_LSt_halfmodule_salal_hale_sens or0 - first semple IMAX_SAMPLE> - 40 module LOT halfmodule starso hole as possible distribution of the starson of the 1.000 4,000 4010 1,000 4.010 4,000 3.010 2,000 2.010 2 010 2.000 3.363 1.000 500 1.000 1.500 2.00 501 Sai 101 1.050 1.101 2.6 530 1.001 1.530 2.00 503 1,030 1,509 2,10 105 1.050 1.105 2.0 510 1.000 1.530 2.0 dectal [MAX_SAMPI Fix=4] [ADC counts] destal (MSX SAMPLEs=4) [ADC counts] destal (MAX SAMPLEs-4) [ADC counts] ectal [MAX_SAMPI Fix=4] [ADC counts] destal (MSX SAMPLEs=4) [ADC counts] dectal (MAX SAMPI Field) (ADC counts) ocule_LCo_haHmadale_starso_slot_se module_Lifb_hafmodule_steres_sist_ser sort - first service (MAR_SAM FLSt---4) module_L/IS_helfmodule_acial_alsc_sen or0 - first servols (MAX_SAM FLE> - 4) produle_LSb_haPmodule_axial_slot_sens pril - first sample (MAR_SAN PLS)- -41 module_LSb_haltmotule_asial_slot_av arg - first semale_CANC_SANPLE> - 0 600 2,000 510 430 1.600 410 -1,000 200 210 503 1 000 1 510 2 10 500 1 000 1 500 2 0 See 500 1 201 1 502 2 510 1 000 1 500 810 1 101 1 501 2 0 510 1,000 1.510 festal IMAX SOMELEX-41 IAOC counts) edestal (Max SAMPLEx= 0 (ADC counts) edestal (Max SAMPLEx=4) JADC counts edestal IMAX SAMPLEX=4LIAOC counts), edestal (MAX SAMPLEX=4) (ADC counts) destal (Max SAMPLE) = dt JADC counts andade, 13h, hatfreeniale, and their system. and first summing (MAR, SAME) Parall. and the ballenduity and hale so with first sensity (NEX 35200 Face) 6.010 6.000 4,000 0.010 4,010 2,000 2.303 2,000 2.000 2,010 1 100 500 1.000 2.500 \$20 1.101 L.\$20 2

Run Week 3 Update

Things to Do

- Sample 0 Layer 1 pedestal shifts
- Understand 8 ns. latency scans
- More careful analysis of pulse shape parameters

- Analyze current scans
- Continue looking at the strange L6 channels