APV25 Shape Time Tuning

Matt Solt

SLAC National Accelerator Laboratory

mrsolt@slac.stanford.edu

February 2, 2016

-∢ ≣ →

Introduction

- Goal is to set APV parameters to shorten the preamp pulse, improve timing reslution, and reduce pileup
- Pulse shape is currently a 2 parameter fit.
- Analyzed pulse shapes for various fit parameters for shortest pulse width
- ► Ran over both parameters from *Isha* ∈ [0, 255] and *VFS* ∈ [0, 300] on the Devboard at room temp
 - Ran for Calibration Group 0 and all delays for a single channel 32
- Ran for 6 runs on the real SVT at -20C

Shaping Parameters

- ▶ Isha: $n \times 1\mu A \in [0, 255]$
- ▶ VFS: $-1.25V (7.5mV) \times n \in [0, 255]$

э

- ∢ ≣ ▶

< □ > < 同 > < 回 >

Fit Function

$$f(t) = \frac{\tau_1^2}{(\tau_1 - \tau_2)^3} \left(e^{-\frac{t}{\tau_1}} - \sum_{k=0}^2 \left(\frac{\tau_1 - \tau_2}{\tau_1 \tau_2} t \right)^k \frac{e^{-\frac{t}{\tau_2}}}{k!} \right)$$
(1)

- Pulse shape function is a quadruple RC filter with 3 RC the same (\(\tau_2)\) and one RC different (\(\tau_1)\)
- τ_1 controls the fall time while τ_2 controls the rise time

Previous Results

- Tp1 depends more on VFS (fall time) and Tp2 depends more on Isha (rise time)
- Smaller values of Tp1 and Tp2 produce shorter pulses
- Smaller VFS and larger Isha produce smaller Tp1 and smaller Tp2, respectively

New Results: Wider Range of Isha/VFS (Dev)

- VFS > 100 makes a poor fit, yet has an extremely long tail. This analysis is ignored
- Tp1 and Tp2 depend on VFS and Isha as expected from previous results

Sample Pulse Fits (Dev)

 Fitted individual pulses (6 samples) and threw T0's into a histogram

Sample T0 Histogram Fits (Dev)

Fitted these histograms and extracted average T0 and T0 resolution

T0 and T0 Resolution Plots (Dev)

- High Isha and Low VFS is optimal for better T0 resolution
- Sidenote: χ², signal, noise, and ratio plots look fine but are not shown

T0 and T0 Resolution Plots (Dev)

Same plot as previous slide in 1D

Pulse Shape Issues (Dev)

 For higher Isha and near the edges of the sensor, there is a dip in the 2nd pedestal

Hybrid Pulse Shape Analysis

Real Runs (SVT)

- All calgroups and delays analyzed
- ▶ Isha = 120, VFS = 0
 - Run Number = 7024, Baseline Run Number = 7020
- Isha = 120, VFS = 100
 - ▶ Run Number = 7026, Baseline Run Number = 7022
- ▶ Isha = 240, VFS = 0
 - Run Number = 7025, Baseline Run Number = 7021
- ▶ Isha = 255, VFS = 0
 - Run Number = 7029, Baseline Run Number = 7028
- Isha = 34, VFS = 60 (Nominal)
 - Run Number = 7030, Baseline Run Number = 7015
- Isha = 70, VFS = 0
 - Run Number = 7027, Baseline Run Number = 7023

Sample Pulse Fits (SVT)

Small dip in the 3rd pedestal as you approach the edge of the sensor

Sample T0 Histogram (SVT)

 Fewer statistics than the Devboard, fits slightly worse but generally still acceptable

Hybrid Pulse Shape Analysis

χ^2 Plots (SVT)

 \blacktriangleright Looking at Feb0 and Hyb0, χ^2 gets worse with increasing Isha

Hybrid Pulse Shape Analysis

Stanford

э

- ∢ ≣ ▶

Signal Plots (SVT)

Looking at Feb0 and Hyb0, amplitude looks similar for all runs

Hybrid Pulse Shape Analysis

Noise Plots (SVT)

Looking at Feb0 and Hyb0, noise looks consistant for all runs

Hybrid Pulse Shape Analysis

Signal to Noise Ratio Plots (SVT)

 Looking at Feb0 and Hyb0, signal to noise ratio slight decrease for higher Isha

Hybrid Pulse Shape Analysis

T0 Resolution All Delays (SVT)

Hybrid Pulse Shape Analysis

T0 Resolution All Delays (SVT)

Hybrid Pulse Shape Analysis

Stanford

э

Average T0 Resolution (SVT)

- Average T0 resolution across all channels for FEB=0 Hyb=0 as a function of delay
- Delay 2 looks wierd and is still being investigated

Conclusions

- Two parameter fit function appears to work quite well
- Explored full range of shaping parameters and found optimal parameters for reduced pulse shape and pulse tail, as well as minimal T0 resolution (high Isha, low VFS)
- Tested these parameters on the actual SVT
- In the near future:
 - Many more plots to look at and a few minor issues to be resolved
 - Look at other FEBs/Hybrids
 - Analyze power consumption for various shaping parameters (Pelle)

χ^2 Plots (Dev)

<ロ> <同> <同> < 同> < 同>

Hybrid Pulse Shape Analysis

Stanford

æ

Signal Plots (Dev)

< □ > < □ > < □ > < □ > < □ > < □

Hybrid Pulse Shape Analysis

æ

Noise Plots (Dev)

▲□▶ ▲□▶ ▲ □▶

Stanford

æ

< ≣

Signal to Noise Ratio Plots (Dev)

Hybrid Pulse Shape Analysis

Stanford

æ

э

▲□▶ ▲圖▶ ▲屋

T0 Plots (SVT)

T0 Isha = 240 VFS = 0 FEB = 0.0 Hybrid = 0.0

T0 Sigma Plots (SVT)

Hybrid Pulse Shape Analysis

Stanford

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 … 釣 � @

T0 All Delays (SVT)

Hybrid Pulse Shape Analysis

T0 All Delays (SVT)

Stanford

Hybrid Pulse Shape Analysis