
Re: review materials (Re: ADDI-DATA Driver Review)

Here's a (simplified) example from their apci1710ctr.c (kernel module)

static bool ringbufPush(counter_channel_t *pchan, uint32_t counter)
{
 int tmpRead, tmpWrite, tmpIndex, frameCountTmp;
 bool rv;

 tmpRead = atomic_read(pchan->readIndex);
 tmpWrite = atomic_read(pchan->writeIndex);

 tmpIndex = (tmpWrite + 1) % _ringSize;

 if (tmpIndex == tmpRead) {

 /* buffer full! update the overflow counter */
 overflowCountIncrement(pchan);
 rv = false;

 } else {

 /* update the element */
 pchan->ringBuf[tmpIndex].counter = counter;

 /* update write index */
 atomic_set(&pchan->writeIndex, tmpIndex);
 rv = true;
 }
 return rv;
}

static bool ringbufPop(counter_channel_t *pchan, uint32_t *counter, uint16_t *frameCount)
{
 int tmpIndex, tmpRead, tmpWrite;
 bool rv = false;

 tmpRead = atomic_read(pchan->readIndex);
 tmpWrite = atomic_read(pchan->writeIndex);

 if (tmpWrite != tmpRead) {
 tmpIndex = (tmpRead + 1) % _ringSize;
 *counter = pchan->ringBuf[tmpIndex].counter;

Till Straumann <strauman@slac.stanford.edu>

Wed 3/9/2016 1:12 PM

To:Ford, Christopher <caf@slac.stanford.edu>; D'Ewart, J. Mitch <mdewart@slac.stanford.edu>; Kim, Kukhee
<khkim@slac.stanford.edu>;

Re: review materials (Re: ADDI-DATA Driver Revi... https://email.slac.stanford.edu/owa/#viewmodel...

1 of 4 03/10/2016 09:34 AM

 *frameCount = pchan->ringBuf[tmpIndex].frameCount;

 /* update read index */
 atomic_set(&pchan->readIndex, tmpIndex);

 rv = true;
 }
 return rv;
}

There are multiple problems here:

neither the 'push' nor the 'pop' routines are thread-safe (as discussed
already). Because the indices are not really manipulated in an atomic
fashion (that would require an atomic_inc_modulo_size() operation)
multiple threads can mess up the indices and not only the data.

This particular module allows 'pop' from user-mode and 'push' from
user-mode *and* the interrupt handler. Certainly not 100% safe

If you want to atomically manipulate the read pointer then:

 item * pop(channel *pchan)
 {
 item *rval;

 unsigned oldIdx = atomic_read(&pchan->readIndex);
 unsigned newIdx, expected;
 do {

 if (oldIdx == atomic_read(pchan->writeIndex)
 return NULL; // buffer empty

 if ((newIdx = oldIdx + 1) == ringSize)
 newIdx = 0; // wrap around

 rval = pchan->buffer[newIdx];

 expected = oldIdx;

 oldIdx = atomic_cmpxch(&pchan->readIndex, oldIdx, newIdx);

 } while (oldIdx != expected);

 return rval;
 }

Looks better - does it? Well this implementation still suffers from the
so-called ABA problem: what happens if

1) thread A reads 'oldIdx and determines it is != writeIdx (buffer not empty)
2) other threads preempt A, push and pop threads until 'oldIdx' again holds
 the same value A had read during 1).

Re: review materials (Re: ADDI-DATA Driver Revi... https://email.slac.stanford.edu/owa/#viewmodel...

2 of 4 03/10/2016 09:34 AM

 Assume the buffer is empty at this point (readIdx == writeIdx).
3) thread A resumes, the atomic_cmpxch() succeeds replacing 'oldIdx' with 'newIdx'
 thereby overflowing the buffer (readIdx now past writeIdx).

This can be mitigated if you e.g., require the buffer size to be a power of two.
Then:

 item * pop(channel *pchan)
 {
 item *rval;

 unsigned oldIdx = atomic_read(&pchan->readIndex);
 unsigned newIdx, expected;
 do {

 if (oldIdx == atomic_read(pchan->writeIndex)
 return NULL; // buffer empty

 rval = pchan->buffer[newIdx & (RING_SIZE-1)];

 expected = oldIdx;

 oldIdx = atomic_cmpxch(&pchan->readIndex, oldIdx, newIdx);

 } while (oldIdx != expected);

 return rval;
 }

Now the ABA problem would require thread A
to preempted until the full range of readIndex (e.g. 2^32) is exhausted
(since the modulo 'ring_size' is only taken when accessing the buffer).

Obviously a 'push' for multiple writers is more complex since you cannot
re-try the store-to-buffer operation.

There are yet more problems: the algorithm lacks proper memory barriers.

If e.g. (assume single-writer only; no overflow check)

 push:
 newIdx = atomic_read(&pchan->writeIdx) + 1;
 buf[newIdx & (RING_SIZE - 1)] = newItem;
 /*** write-barrier HERE must ensure buf[] is written BEFORE 'newIdx' ***/
 atomic_set(newIdx, &pchan->writeIdx);

and you have two threads executing on different CPUs; one pushing the
other popping, then, without memory barriers, there is no guarantee
that the 'popping' CPU observes the updated value in the 'buffer' array.
It could instead obtain the 'old' value. (A read barrier must be
inserted between reading the writeIdx and the buffer contents).

Re: review materials (Re: ADDI-DATA Driver Revi... https://email.slac.stanford.edu/owa/#viewmodel...

3 of 4 03/10/2016 09:34 AM

I cooked this all up in half an hour and am far from certain that
the presented examples are correct. Just wanted to illustrate that
lock-free design is far, far, from trivial. Unless performance is
really critical and seriously impacted by locking algorithms
then I'd stay away from lock-free solutions -- unless you can pull
them out of a good-quality library (in user-mode, e.g., boost).

- T.

On 03/08/2016 04:32 PM, Ford, Christopher wrote:

See you tomorrow at the ADDI-DATA driver review.

Thanks,
 -caf

Re: review materials (Re: ADDI-DATA Driver Revi... https://email.slac.stanford.edu/owa/#viewmodel...

4 of 4 03/10/2016 09:34 AM

