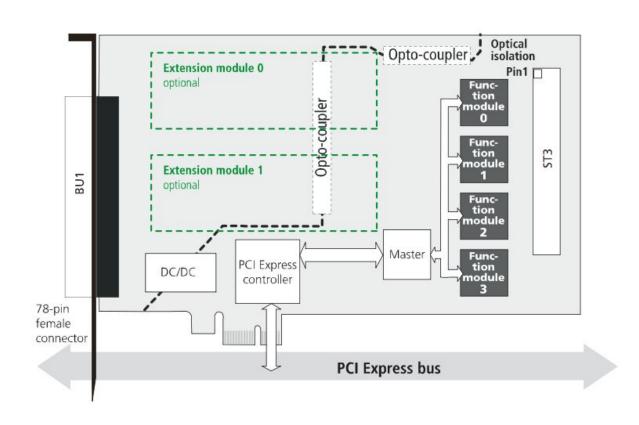
ADDI-DATA APCIe-1711 Incremental Counter EPICS Driver

Chris Ford <caf@slac.stanford.edu> May 12, 2016


Overview

This is an EPICS asyn port driver for the ADDI-DATA APCIe-1711 PCI-Express incremental counter board.

The driver supports 4 counter channels by both polling and interrupt modes.

Interrupt mode support includes EVR timestamps.

ADDI-DATA APCIe-1711 Block Diagram

ADDI-DATA APCIe-1711 Versions

7.3 Versions and options

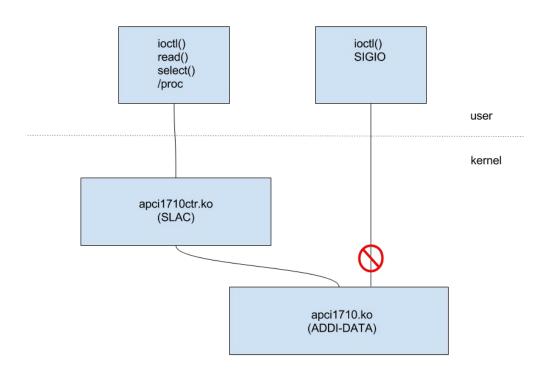

The boards APCIe-1711 and CPCIs-1711 are available in the following versions:

Table 7-1: Versions and options

Version	Features	
APCIe-1711	Multifunction counter board, optically isolated	
APCIe-1711-24V	24 V inputs instead of RS422/TTL inputs/outputs (A, B, C, D)	
APCIe-1711-5V-I	5 V inputs instead of 24 V inputs (E, F, G)	
APCIe-1711-10MHz	Input frequency 10 MHz, inputs (A, B, C, D)	
CPCIs-1711	Multifunction counter board, optically isolated	
CPCIs-1711-24V	24 V inputs instead of RS422/TTL inputs/outputs (A, B, C, D)	
CPCIs-1711-5V-I	5 V inputs instead of 24 V inputs (E, F, G)	

The specific version name can be found on the type label at the slot bracket or front panel of your board.

SLAC Kernel Module Uses ADDI-DATA Kernel API

SLAC Kernel Module Ring Buffers

Each channel has a ring buffer in kernel memory

Small amount of data per interrupt...

Written to ring buffer by interrupt callback routine (ADDI-DATA kernel API)

Copied to user memory by read() (character device interface)

Template db/APCI1710Counter.db Records

Record Name	Description
\$(P)\$(R)Counts	Read the raw counter value; polled at 10 Hz.
\$(P)\$(R)RTCounts	Read the real-time raw counter value; interrupt mode with EVR timestamps support.
\$(P)\$(R)POSN	Read the engineering unit value; polled at 10 Hz.
\$(P)\$(R)RTPOSN	Read the real-time engineering unit value; interrupt mode with EVR timestamps support.
\$(P)\$(R)Reset	Zero the counter by writing 1 to this binary output.

Template db/APCI1710Counter.db Macros

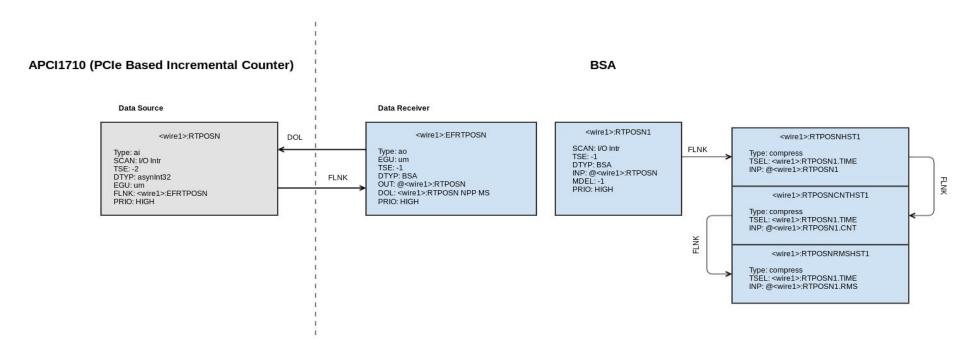
Macro Name	Description
\$(P) and \$(R)	These macros are concatenated to form the record name prefix.
\$(PORT)	Must match the port name passed to APCI1710Config().
\$(ADDR)	Channel index: 0, 1, 2, 3
\$(ESLO)	Linear conversion factor (ai record, LINR=SLOPE). Must be non-0.
\$(EGU)	Human readable engineering unit description, up to 16 chars.

Configuration Command

This C function can be called directly or from iocsh:

int APCI1710Config(const char *portName, int boardNum)

Only board number 0 is currently supported. Example call:


APCI1710Config("apci1710", 0)

EVR Timestamp Support

The \$(P)\$(R)RTCounts and \$(P)\$(R)RTPOSN records have TSE=-2, indicating that device support will handle the time stamp.

Each counter channel has a dedicated high priority thread that reads data from the kernel driver. Immediately after reading data, this thread calls evrTimeGet() to get the 120Hz resolution timestamp, followed by setTimeStamp() to set the timestamp in pasynManager.

BSA Integration

EPICS Version Information

This driver was developed with the following EPICS version environment:

ASYN_MODULE_VERSION=asyn-R4-26_0

EPICS_BASE_VER=base-R3-14-12-4_1-1

EVENT_MODULE_VERSION=evrClient-R1-0-p6

MISCUTILS_MODULE_VERSION=miscUtils-R2-2-2

Linux Kernel Requirements

This driver was developed on the "Buildroot 2015.02" OS release, using Linux kernel 3.18.11 with real-time patches (LinuxRT). Two kernel modules are required.

Name	Origin
apci1710.ko	ADDI-DATA
apci1710ctr.ko	SLAC

Module apci1710 is used by module apci1710ctr. Thus one must insert module apci1710.ko into the Linux kernel before apci1710ctr.ko.

Where to find the code

Modules:

```
/afs/slac/g/lcls/epics/R3-14-12-4_1-1/modules/apci1710-asyn
/afs/slac/g/lcls/package/linuxKernel_Modules/apci1710ctrDriver
/afs/slac/g/lcls/package/linuxKernel_Modules/apci1710Driver
```

Git Repositories:

```
/afs/slac/g/cd/swe/git/repos/package/epics/modules/apci1710.git
/afs/slac/g/cd/swe/git/repos/package/linux/drivers/kernel/apci1710ctrDriver.git
/afs/slac/g/cd/swe/git/repos/package/linux/drivers/kernel/apci1710Driver.git
```

For Additional Information

ADDI-DATA Driver Development on Confluence:

https://confluence.slac.stanford.edu/display/~caf/ADDI-DATA+Driver+Development

ADDI-DATA Contact:

<info@addi-data.com>

