# **Baseline and noise studies**

Pelle





1

#### Low noise level on L1bA

#### SLAC

FEB: 2 Hybrid: 1 Noise - Sample 4



Goal was to check "weird" channels and if fitted width of "baseline" can be used to estimate noise ⇒ Width biased by pile-up i.e. real energy depositions

Region [600-639] with ~dozen channels with 20% lower noise and some 10% high [whole apv has issues?]

### Sample-0 fitted mean/width

100

80

60



Run 5772, channel nr >500 module L1b halfmodule axial sensor0 channels - first sample (MAX SAMPLE>=4)





### Runs

| 5784 | Straight through          |
|------|---------------------------|
| 5043 | 3mm (10kHz)               |
| 5186 | 2mm (10kHz)               |
| 5380 | 1.5mm (10kHz)             |
| 5772 | 0.5mm (20kHz)             |
| 5774 | 0.5mm pulser only (10kHz) |
| 5796 | 0.5mm                     |
| 5694 | 0.5mm (17kHz)             |
| 5405 | 1.5mm                     |
| 5548 | 1.5mm                     |
| 5577 | 1.5mm                     |

# Sample-0 fitted width



#### Width for multiple runs

module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

#### Ratio vs 5772

ratio grRMS\_module\_L1b\_halfmodule\_axial\_sensor0



# **Sample-0 distributions**

#### SLAC



#### Channel 451

module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)



Goal was to check "weird" channels on L1bA.

- Width biased by pile-up i.e. real energy depositions
- Noticed that fitted mean ("baseline") seemed biased too

Started looking at this systematically: compared mean and width for multiple runs

Notes for the following: avoid point if fit has "large" error or less than 30 hits per channel

### **Straight Throughs – L1b axial**

Width



module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

#### Away from beam plane



module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

#### **Straight Throughs – L6b axial slot (positron)**



Away from beam plane



module\_L6b\_halfmodule\_axial\_slot\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

### Straight Throughs – L5b axial slot (positron)



module\_L5b\_halfmodule\_axial\_slot\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

#### Away from beam plane

SL



module\_L5b\_halfmodule\_axial\_slot\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

### Straight Throughs – L6b axial hole (electron)



module\_L6b\_halfmodule\_axial\_hole\_sensor0 channels - first sample (MAX\_SAMPLE>=4)





module\_L6b\_halfmodule\_axial\_hole\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

### Straight Throughs – L5b axial hole (electron)



module\_L5b\_halfmodule\_axial\_hole\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

#### Away from beam plane



module\_L5b\_halfmodule\_axial\_hole\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

| 5784 | Straight through |  |
|------|------------------|--|
| 5043 | 3mm (10kHz)      |  |
| 5186 | 2mm (10kHz)      |  |
| 5380 | 1.5mm (10kHz)    |  |
| 5772 | 0.5mm (20kHz)    |  |

## Multiple runs – L1b axial

module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)



Effect depends on occupancy (?); perhaps an overall baseline shift too (or calib. effect)? For all (?) the 0.5mm the whole innermost APV chip has a step in width (expected smoother transitions)? 12

module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

#### 0.5mm vs 3mm runs – L1b axial vs L1b stereo

#### 5043 is 3mm runs, the others late 0.5mm runs



module\_L1b\_halfmodule\_stereo\_sensor0 channels - first sample (MAX\_SAMPLE>=4)



module L1b halfmodule axial sensor0 channels - first sample (MAX SAMPLE>=4)





Axial and stereo behave the same

SLAO

### 0.5mm vs 3mm runs – L2b axial vs L2b stereo

SLAC





L2 shows similar but smaller effect (see scale) Innermost APV has less pronounced "step" in width

module\_L2b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)



module\_L2b\_halfmodule\_stereo\_sensor0 channels - first sample (MAX\_SAMPLE>=4)



### Pulser vs normal runs – L1b axial vs L1b stereo

SLAC



module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)

module\_L1b\_halfmodule\_stereo\_sensor0 channels - first sample (MAX\_SAMPLE>=4)



Pulser identical to triggered runs

module\_L1b\_halfmodule\_axial\_sensor0 channels - first sample (MAX\_SAMPLE>=4)







SLAC

No obvious sign of low noise on "weird" channels on L1b in any run

• Not sure I would see them this way; look harder?

Sample-0 biased by pile-up (no surprise)

- Width ("noise") increase by up to x2 (x1.5) for 10 channels close to beam for L1 (L2) @ 0.5mm
- Fitted mean shifts down by up to 200 (100) ADC for 10ch's close to beam for L1 (L2) @ 0.5mm. Not sure why; artifact in selection?
- Pulser, straight throughs, old vs new all show similar behavior
- Observe baseline shifts (sample-0 mean pedestal) regularly above 50 ADC.