Separate Calibrations for Simulation
and Reconstruction

Leon R.
Core Software Meeting
24-October-2006



Rationale

= Qur calibrations are approximate.

= We want to model this by having simulation and
reconstruction calibrations that don’t quite match.

= We can use calibration flavors to implement this.
— For production:
« Simulation and reconstruction are different jobs, so there’s no issue.

— For development, test, user jobs, etc:
» A two-step job is inconvenient.
» Display of MC event from mc.root is compromised.



TKR Calibration Strategy

Each calibration is handled by a service, which is passed a
pointer to a CalibData object. (A service can handle more
than one calibration type, but this is not relevant for the
discussion.) Each service has an update() method that can be
used to pass a pointer, and signal any local processing.

Once per event, a tracker Algorithm, TkrCalibAlg, checks to
see If all the calibrations are in their valid ranges, and if not,
prompts CalibSvc for a new calibration, and updates the
appropriate service with the new pointer.

— This is invoked in a Gaudi sequence, but there is currently only one
member.

;ééquencer/CalibUpdate"

ééiibUpdate-Members = {“TkrCalibAlg”};



TkrCalibAlg
(in TkrUtil package)

= Controls all the calibrations

= |nitialized from jobOptions

— All calibration types can be set to the same flavor

TkrCalibAlg.calibFlavor = “DC2”;
// Default = “ideal”

— The common assignment can be over-ridden for each
constant type individually

TkrCalibAlg.deadStripsFlavor = “myTest”;
// Default = “notSet”



Multiple Calibrations: Simple Case
(example: TkrToTSvc in TkruUtil)

In this case, constants are retrieved from the calibration file by the service, without any
further processing:

= Put an instance of TkrCalibAlg into each of two Gaudi sequences:

" SimCal ibUpdate .Members = {“TkrCalibAlg/TkrSimCalib”};
RecCal1bUpdate.Members = {“TkrCalibAlg/TkrRecCalib};

“ééduencer/SimCalibUpdate”,
. Digi stuff..

;ééquencer/RecCalibUpdate”,
. Recon stuff..

= Each instance is initialized separately:

TkrSimCalib.calibFlavor “vanilla”;
TkrRecCalib.calibFlavor “vanilla”;
TkrRecCalib.deadStripsFlavor = “myTest”;

= The algorithm must update the data pointer every time it’s called, because it has no
way of knowing what the other instance (if any) has done.

-5-



Multiple Calibrations:
More Complicated Case
(example: TkrBadStripsSvc in TkrUtil)

= In this case, the service processes the data in the calibration
file and produces locally stored information.

= Two approaches:
— Duplicate the service
— Duplicate the local storage

= |’ve chosen the latter (it seemed more maintainable...)



Add a method to the service,

called by TkrCalibAlg

Set a flag in the service, depending on called name of the
TkrCalibAlg.

// look for "Rec'™ i1n the name
if(hame().find(""Rec') =std: :string::npos) {
m_pTkrBadStripsSvc->setCalType(ITkrBadStripsSvcCalib: :REC);
m_pTkrFailureModeSvc->setCalType(1TkrFailureModeSvcCalib: :REC);
} else {
m_pTkrBadStripsSvc->setCalType(1TkrBadStripsSvcCalib::SIM);
m_pTkrFairlureModeSvc->setCalType(ITkrFairlureModeSvcCalib: :SIM);

}

= The service uses the flag to choose one of the sets of locally maintained
data to return values, and to update if necessary.

= The service needs to be updated only if the pointer changes, unless the
service tracks the changes itself. (The latter is probably better.)

= This code is backwards-compatible with the standard Gaudi sequence.



	Separate Calibrations for Simulationand Reconstruction
	Rationale
	TKR Calibration Strategy
	TkrCalibAlg(in TkrUtil package)
	Multiple Calibrations: Simple Case(example: TkrToTSvc in TkrUtil)
	Multiple Calibrations:More Complicated Case(example: TkrBadStripsSvc in TkrUtil)
	Add a method to the service,called by TkrCalibAlg

