Event Collections

@ Tssue: Event Data is spread across several files
@ Digi, Recon, MC, Merit, Svac, Cal Tuple, GCR Tuple
@ Some have simple NTuples, others have ROOT objects

@ Problems with this.

@ Synchronicity: need to make sure that files stay in sync
@ Requires ad-hoc solutions certain cases
@ Writing empty events into some files
@ Makes sparse collections impractical
@ Need to deep-copy all the data you want
@ File management:
@ Different files made by different tasks
@ Might not be stored in the same place

@ Pain for users, need to keep track of several files




|.¢

Panacea

@ Build system to collect parts of events into groups

@ Basically "pointer” or "meta-data” collection

@ Store a TTree with just enough information to find the various
parts of the event

@ Define event components

@ A component is one entry in a TTree that contains data for a
given event

@ Build a event by having a bunch of pointers fo components




Event Component Pointer

@ Minimum data to find an event component
@ Which file
@ Which tree in file
@ Which entry in tree

@ How to specify that information
@ In ROOT Entry is just Longb64_t {64 bit signed integer)
@ File/ Tree is more complicated
@ Easiest is strings for FileName, TreeName
@ Many events from same file/tree

@ Keep file/tree names in separate TTree with only a few
entries




Design For One Component

EventPointer

Long64 t eventindex;
UShort_t treeKey;

into vectors

>

TreeRefHandle

UShort_t _size;

Long64 t entries;
vector<string> treeNames;
vector<string> fileNames;
vector<Long64 t> offsets;

_treeKey is index

—)

a

€

Event Tree
One Entry For Each Event

N

4

~

File Tree
One Entry for each Run

~




l.-—«-’

Overall Design

@ D

Link Tree

Tells which entry in File Tree
Goes with each entry in Event Tree

S 'd

/ Event Tree \ / File Tree \

One Entry For Each Event One Entry for each Run

< 4 (& /

When merging collection, Event Tree and File Tree stand alone and can be copied
with uncompressing.
Only Link Tree needs to be modified.




Some Bonuses

@ Sparse Collections

@ Can make collections containing only events that pass certain
cuts.

@ Useful for calibrations

@ Avoids data duplication, actual data of f in XROOTD, only have
pointers to the event components

@ Can make 'deep-copies’ as heeded when you want to
transfer data to outside sources
@ Replaceable components

@ When re-running part of processing just generate new index files
that point to new version of processed data

@ Point users at the new index files

@ Less headache for users




Working Example

@ This has all been implemented for GLAST
@ Functionality discussed here is in metaRooData

@ Main Classes is PointerSkim
@ Long64_t PointerSkim::fillEvent(vector<TTree*>& trees)
@ Stores one event, gets file names and tree entries numbers
@ Returns number of bytes written, on negative # for error
@ Long64_t PointerSkim::fillMeta()
@ Called at end of run, fills entry in file tree
@ Returns number of bytes written, on negative # for error
@ TChain* PointerSkim::buildChain(TObjArray* chainList)
® Builds and return a TChain with all the events
@ Also builds TChains for each component

@ Uses PointerIndex (sub-class of TvirtualIndex) to point to




‘File Handling

@ All file handling broken out into FileUtil.h (cxx)
@ This allows us to get fancy with file names
@ | ogical File names

@ Relative File names
@ Sticking stuff behind XROOTD
@ TFile* FileUtil::openFile(const char* fileName);
@ Opens a file given LFN
@ TFile* getFile(TTreed& tree)
@ Get LFN give a TTree




