
Event Collections

Issue: Event Data is spread across several files
Digi, Recon, MC, Merit, Svac, Cal Tuple, GCR Tuple
Some have simple NTuples, others have ROOT objects

Problems with this.
Synchronicity: need to make sure that files stay in sync

Requires ad-hoc solutions certain cases
Writing empty events into some files

Makes sparse collections impractical
Need to deep-copy all the data you want

File management:
Different files made by different tasks

Might not be stored in the same place
Pain for users, need to keep track of several files

Panacea

Build system to collect parts of events into groups
Basically “pointer” or “meta-data” collection

Store a TTree with just enough information to find the various
parts of the event

Define event components
A component is one entry in a TTree that contains data for a
given event
Build a event by having a bunch of pointers to components

Event Component Pointer

Minimum data to find an event component
Which file
Which tree in file
Which entry in tree

How to specify that information
In ROOT Entry is just Long64_t {64 bit signed integer)
File/ Tree is more complicated

Easiest is strings for FileName, TreeName
Many events from same file/tree

Keep file/tree names in separate TTree with only a few
entries

Design For One Component

EventPointer

Long64_t _eventIndex;
UShort_t _treeKey;

TreeRefHandle

UShort_t _size;
Long64_t _entries;
vector<string> _treeNames;
vector<string> _fileNames;
vector<Long64_t> _offsets;

Event Tree
One Entry For Each Event

_treeKey is index
into vectors

File Tree
One Entry for each Run

Overall Design

Event Tree
One Entry For Each Event

File Tree
One Entry for each Run

Link Tree

Tells which entry in File Tree
Goes with each entry in Event Tree

When merging collection, Event Tree and File Tree stand alone and can be copied
with uncompressing.
Only Link Tree needs to be modified.

Some Bonuses

Sparse Collections
Can make collections containing only events that pass certain
cuts.

Useful for calibrations
Avoids data duplication, actual data off in XROOTD, only have
pointers to the event components

Can make ‘deep-copies’ as needed when you want to
transfer data to outside sources

Replaceable components
When re-running part of processing just generate new index files
that point to new version of processed data

Point users at the new index files
Less headache for users

Working Example

This has all been implemented for GLAST
Functionality discussed here is in metaRooData
Main Classes is PointerSkim

Long64_t PointerSkim::fillEvent(vector<TTree*>& trees)
Stores one event, gets file names and tree entries numbers
Returns number of bytes written, on negative # for error

Long64_t PointerSkim::fillMeta()
Called at end of run, fills entry in file tree
Returns number of bytes written, on negative # for error

TChain* PointerSkim::buildChain(TObjArray* chainList)
Builds and return a TChain with all the events
Also builds TChains for each component
Uses PointerIndex (sub-class of TvirtualIndex) to point to
events in compontent Chains

•File Handling
All file handling broken out into FileUtil.h (cxx)

This allows us to get fancy with file names
Logical File names
Relative File names
Sticking stuff behind XROOTD

TFile* FileUtil::openFile(const char* fileName);
Opens a file given LFN

TFile* getFile(TTree& tree)
Get LFN give a TTree

