
Event Collections
Issue: Event Data is spread across several files

Digi, Recon, MC, Merit, Svac, Cal Tuple, GCR Tuple
Some have simple NTuples, others have ROOT objects

Problems with this.
Synchronicity: need to make sure that files stay in sync

Requires ad-hoc solutions certain cases
Writing empty events into some files

Makes sparse collections impractical
Need to deep-copy all the data you want

File management:
Different files made by different tasks

Might not be stored in the same place
Pain for users, need to keep track of several files

Panacea
Build system to collect parts of events into groups
Basically “pointer” or “meta-data” collection

Store a TTree with just enough information to find the various
parts of the event

Define event components
A component is one entry in a TTree that contains data for a
given event
Build a event by having a bunch of pointers to components

Event Component Pointer
Minimum data to find an event component

Which file
Which tree in file
Which entry in tree

How to specify that information
In ROOT Entry is just Long64_t {64 bit signed integer)
File/ Tree is more complicated

Easiest is strings for FileName, TreeName
Several Improvements on this possible

Specifying File/ Tree
Improvement: use external table for File/Tree names

Entry in n-tuple column is just index into table
Maybe Int_t -> 32 bit signed integer or even smaller

Entries in table are more complicated and flexible
Physical File Name/ Tree Name
Logical File Name (in XROOTD) / Tree Name
Relative File Name

Assumes that all files in same area, allows them to be
moved as a group

Reading Collections
Easiest solution: provide a class to open/ access the
component trees

reader->getEvent(Long64_t iEvt, vector<TTree*>& comps);
Reads the correct events from the component trees,
puts them onto the vector “comps”

Can add some control of what does/ doesn’t get read
reader->readBranch(const char* tree, const char* branch)

Fancier solution: make sub-classes of ROOT stuff to
handle our trees

GTree : public TTree
GTreeReader : public TTreeReader

Might only need one, not both
GTree->LoadTree(Long64_t) -> also loads component trees
Use FriendTree stuff in ROOT to allow plotting data from
different components against each other

Some Bonuses
Sparse Collections

Can make collections containing only events that pass certain
cuts.

Useful for calibrations
Avoids data duplication, actual data off in XROOTD, only
have pointers to the event components

Can make ‘deep-copies’ as needed when you want to
transfer data to outside sources

Replaceable components
When re-running part of processing just generate new index
files that point to new version of processed data

Point users at the new index files
Less headache for users

Working Example
This has all been implemented for BaBar

Actually, BaBar model much more complicated
Functionality discussed here is in:

KanEvent/KanHeaderTree
Inherits from TTree
Overrides TTree::Fill() and TTree::LoadTree()
Basic representation of Event component is

pair<TTree*,TFile*> FileAndTree
Int_t index

	Event Collections
	Panacea
	Event Component Pointer
	Specifying File/ Tree
	Reading Collections
	Some Bonuses
	Working Example

