

"FocalPoint" FM2224 24-Port 10G Ethernet L2 Switch Chip

Advanced Information Data Sheet

Feb, 2006 (Revision 0.7)

Trademark and Copyright Notice

Information in this document is provided in connection with Fulcrum products. No license or other access to intellectual property rights is granted by this document. Except as provided in Fulcrum's Terms and Conditions of Sale and/or use of Fulcrum products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Fulcrum products are not intended for use in medical, life saving, or life sustaining applications.

Fulcrum may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Fulcrum reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The product described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copyright © Fulcrum Microsystems, 2005

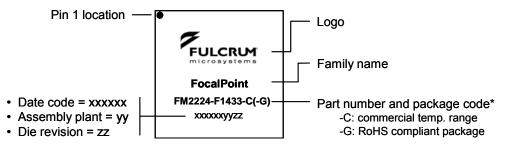
Third-party brands and names are the property of their respective owners.

Contact and Support Information

Phone: 818-871-8100 Fax: 818-871-8101 support@fulcrummicro.com www.fulcrummicro.com

Overview

"FocalPoint" is Fulcrum's name for the company's 10G Ethernet L2 switch chip platform. Fulcrum intends to offer multiple market- and customer-specific product variants based on the platform. This preliminary data sheet documents the features and functionality of the initial 24-port variant of the FocalPoint platform, which will be referred to in this document as the FM2224.


This document provides advanced information about the FM2224. All specifications, including the power, pin assignments and product number, are subject to change. Please consult Fulcrum regularly to receive updates to this document.

Document Revision History

Revision	Date	Notes
0.1	Mar 16, 2005	Initial draft distributed for internal review.
0.2	April 30, 2005	Final draft distributed for internal review.
0.3	May 5, 2005	First draft available for controlled distribution.
0.4	July 23, 2005	Second draft available for controlled distribution.
0.5	August 3, 2005	Third draft available for controlled distribution.
0.6	Dec 2, 2005	Fourth draft available for controlled distribution.
0.70	March 9, 2006	Fifth draft available for controlled distribution

Product Applicability

This advanced information data sheet documents the features and functionality of the FM2224, the initial member of the FocalPoint product family. The FocalPoint FM2224 part number is structured as follows:

*Note: Pre-Production part numbering may differ slightly

Key:

- Product Family: "2" represents the Ethernet L2 switch product family, of which FocalPoint is a member.
- Port Configuration: Provides guidance on the composition of the ports in the device, as follows:
 - 1: More than 50% of the interfaces are single-SerDes interfaces
 - 2: More than 50% of the interfaces are quad-SerDes interfaces
- Aggregate Bandwidth: "24" represents an aggregate bandwidth of 240Gbps.
- Temperature: "C" represents commercial grade.

Note:

• RoHS: The presence of a "-G" means that the device is complaint with the RoHS requirements for environmentally-friendly chip manufacturing.

Other Related Documents and Tools

Other documents that may be useful for evaluating and using the FM2224 include:

- FM2224 Software API Specification
- FM2224 Specification Update, which contains errata and other specification and documentation changes
- FM2224 Design and Layout Guide
- FM2224 Reference Design Data Sheet
- FM2224 Design Support Package on CD

Contents

1.0	Introduction	11
1.1	Product Overview	11
1.2	Application Examples	13
1.3	Supported Standards and Specifications	19
1.4	Definitions	19
2.0	Architectural Overview	21
2.1	Principles of Operation	21
2.2	Architectural partitioning	21
2.3	In-depth Architecture	23
3.0	Functional Description	30
3.1	Ethernet Port Logic (EPL)	30
3.2	Frame Control	40
3.3	Congestion Management	51
3.4	Statistics	57
3.5	Management	58
3.6	Clocks	74
4.0	Electrical Specifications	76
4.1	Absolute Maximum Ratings	
4.2	Recommended Operating Conditions	76
4.3	AC Timing Specifications	80
5.0	Register Definitions	83
5.1	Register Conventions	83
5.2	Register Map	83
5.3	Global Registers	88
5.4	Switch Configuration	93
5.5	Bridge Registers	107
5.6	Congestion Management	114
5.7	Statistics	122
5.8	EPL Registers	129
6.0	Signal, Ball, and Package Descriptions	145
6.1	Package Overview	145
6.2	Power Mapping	145
6.3	Interface Mapping	146
6.4	Signal Descriptions	
6.5	Package Dimensions	165
6.6	Recommended Heat Sink Vendors	167
7.0	Document Revision History	

Figures

Figure 1	Advanced TCA Central Switch Fabric	14
Figure 2	Advanced TCA Node Card Switch (Full Mesh)	15
Figure 3	Blade Computer Switch Fabric	16
Figure 4	Compute Cluster Switch	17
Figure 5	Fat-Tree Configuration of Cluster Switches	17
Figure 6	Fat-Tree Configuration in a Box	18
Figure 7	Aggregator for Stackable 10/100/1000 Switch	18
Figure 8	FM2224 Block Diagram	21
Figure 9	FM2224 Switch Element Architecture	24

Figure 10	Switch Element Scheduler	
Figure 11	FocalPoint Frame Processor Architecture	
Figure 12	Ethernet Port Logic Functional Blocks	
Figure 13	Driver Equalization	
Figure 15	Proprietary Header Support	
Figure 16	Federated Switch Support	
Figure 17	Congestion management architecture	
Figure 18	Priority Mapping	
Figure 19	WRED Implementation	
Figure 20	FocalPoint Management Infrastructure	59
Figure 21	Example of FocalPoint with a PCI DMA Controller	
Figure 22	Frame Transmission	
Figure 23	Frame Reception	
Figure 24	CPU Bus Interface State Diagram	
Figure 25	CPU Interface Read Timing Diagam	
Figure 26	CPU Interface Write Cycles	
Figure 27	SPI Timing Diagram	
Figure 28	Serial LED Timing Diagram	
Figure 30	CPU Signal Timing	
Figure 31	Power Mapping for the FM2224 1433-ball BGA Package	
Figure 32	Interface Mapping	
Figure 33	FM2224 Package Bottom View	
Figure 34	FM2224 Package Top View	
Figure 35	FM2224 Package Side View	
Figure 36	Expanded Detail B of Side View	

Tables

Table 1	Reference Clock to Port Correspondence	31
Table 2	V _{TT} and Max allowable V _{SW}	33
Table 3	CDR Lock Times	33
Table 4	Packet Transmission on CPU Port in Little Endian	
Table 5	Packet Transmission on CPU Port in Big Endian	63
Table 6	Packet Reception on CPU port in Little Endian	63
Table 7	Packet Reception on CPU Port in Big Endian	63
Table 8	LCI_RX_EXTRA_INFO	64
Table 9	LCI_RX_FRAME_STATUS	65
Table 10	LCI_TX_LEN	65
Table 11	LCI_TX_DMASK	65
Table 12	CPU Interface External IO Description	68
Table 13	CPU Interface Address Space	69
Table 14	SPI External Interface Pin List	71
Table 15	Port LED Sequence	72
Table 16	Supported JTAG Instructions	73
Table 17	JTAG ID Register	74
Table 18	Reference Clock Requirements	74

Table 19	Absolute Maximum Ratings	76
Table 20	Recommended Operating Conditions	76
Table 21	DC Characteristics of 4mA LVTTL Outputs	
Table 22	DC Characteristics of 8mA LVTTL Outputs	
Table 23	DC Characteristics of LVTTL Inputs	
Table 24	XAUI Transmitter Characteristics	
Table 25	XAUI Receiver Characteristics	
Table 26	CPU Interface Timing Constraints	
Table 27	Global Register List	
Table 28	Switch Configuration Register List	
Table 29	Logical CPU Interface Register List	
Table 30	Bridge Register List	
Table 31	Congestion Management Register List	
Table 32	Ethernet Port Logic Register List	
Table 33	Scan Chain Access Register List	
Table 34	BOOT_STATUS	
Table 35	SOFT_RESET	
Table 36	PORT RESET	
Table 37	CHIP MODE	. 90
Table 38	CLK MULT 1	
Table 39	FRAME TIME OUT	
Table 40	VITAL_PRODUCT_DATA	
Table 41	PLL FH CTRL	
Table 42	PLL Configuration Examples	
Table 43	PLL FH STAT	
Table 44	PORT CLK SEL	
Table 45	INTERRUPT DETECT	
Table 46	GLOBAL_EPL_INT_DETECT	
Table 47	MGR IP.	
Table 48	MGR IM	
Table 49	FRAME CTRL IP	94
Table 50	FRAME CTRL IM	95
Table 51	PERR IP	
Table 52	PERR IM	96
Table 53	PERR DEBUG	96
Table 54	PORT VLAN IP 1	96
Table 55	PORT VLAN IM 1	
Table 56	PORT VLAN IP 2	97
Table 57	PORT_VLAN_IM_2	97
Table 58	PORT MAC SEC IP	
Table 59	PORT MAC SEC IM	97
Table 60	TRIGGER_IP	
Table 61	TRIGGER_IM	
Table 62	SYS_CFG_1	
Table 63	SYS_CFG_2	100
Table 64	SYS_CFG_3	100

Table 65	SYS CFG 4	. 101
Table 66	SYS CFG 6	. 101
Table 67	SYS ^{CFG} 7	. 101
Table 68	PORT CFG 1 [124]	. 102
Table 69	PORT CFG 2 [124]	. 103
Table 70	HEADER_MASK [0.3]	
Table 71	LCI CFG	
Table 72	LCI STATUS	
Table 73	LCI RX FIFO	. 106
Table 74	LCI TX FIFO	. 106
Table 75	LCI IP	. 106
Table 76		. 107
Table 77	$MA\overline{C}$ Address Table	. 107
Table 78	MA TABLE CFG	. 108
Table 79	MA TABLE STATUS 1	. 108
Table 80	MA TABLE STATUS 2	. 109
Table 81	MA TABLE STATUS 3	. 109
Table 82	VLĀN ID Table	
Table 83:	FID_TABLE (Spanning Tree State Table)	. 110
Table 84	TRUNK_PORT_MAP [124]	
Table 85	TRUNK GROUP 1 [0.11]	
Table 86	TRUNK_GROUP_2 [011]	
Table 87	TRUNK GROUP 3 0.11	
Table 88	TRUNK_CANONICAL [1.24]	. 111
Table 89	TRUNK_HASH_MASK	. 112
Table 90	TRIGGER_CFG [015]	. 113
Table 91	TRIGGER PRI [0.15]	
Table 92	TRIGGER_RX [015]	. 114
Table 93	TRIGGER_TX [015]	. 114
Table 94	RX_PRI_MAP [024]	. 115
Table 95	CM_PRI_MAP_1	. 115
Table 96	CM_PRI_MAP_2	. 115
Table 97	SCHED_PRI_MAP	. 116
Table 98	LFSR_CFG	
Table 99	QUEUE_CFG_1 [024]	. 117
Table 100	QUEUE_CFG_2 [024]	. 117
Table 101	QUEUE_CFG_3	. 117
Table 102	QUEUE_CFG_4	. 118
Table 103	QUEUE_CFG_5	. 118
Table 104	STREAM_STATUS_1 [024]	
Table 105	STREAM_STATUS_2	
Table 106	EGRESS_SCHEDULE_1 [024]	. 119
Table 107	EGRESS_SCHEDULE_2 [024]	
Table 108	GLOBAL_PAUSE_WM [024]	. 120
Table 109	RX_PAUSE_WM [024]	. 120
Table 110	SAF_MATRIX [0]	. 121

Fulcrum Confidential

Table 111	SAF MATRIX [124]	121
Table 112	JITTER_CFG (JITTER WATERMARK)	
Table 112 Table 113	STATS MIN FRAME	
Table 115	STATS_WINV_TRANVLSTATS_CFG	
Table 115	STATS DROP COUNT	
Table 115	Group 1 Counters - RX Packet Counters per Type [024]	
Table 117	Group 2 Counters - RX Packet Counters per Type [024]	
Table 117 Table 118	Group 3 Counters - RX Octet Counters [024]	
Table 118	Group 4 Counters - RX Packet Counters per Priority [024]	
Table 119 Table 120	Group 5 Counters - RX Octet Counters per Priority [024]	
Table 120	Group 6 Counters - RX Packet Counters per Flow [024]	
Table 121 Table 122	Group 7 Counters - TX Packet Counters per Type [024]	
Table 122 Table 123	Group 8 Counters - TX Packet Counters per Type [024] Group 8 Counters - TX Packet Counters per Size [024]	
Table 123	Group 9 Counters - TX Octet Counters [124]	
Table 124 Table 125	Group 10 Counters - Congestion Management Counters	
Table 125 Table 126		
Table 120 Table 127	Group 11 Counters - VLAN Octet Counters [031]	
Table 127 Table 128	Group 12 Counters - VLAN Packet Counters [031]	
Table 128 Table 129	Group 13 Counters - Trigger Counters [016]	
	SERDES_CTRL_1 [124]	
Table 130	Equalization and Driver Table	
Table 131	SERDES_CTRL_2 [124]	
Table 132	Nominal SERDES Drive Current	
Table 133	SERDES_CTRL_3 [124]	
Table 134	SERDES_TEST_MODE [124]	
Table 135	SERDES_STATUS [124]	
Table 136	SERDES_IP [1.24]	
Table 137	SERDES_IM [1.24]	
Table 138 Table 139	SERDES_BIST_ERR_CNT [124]	
	PCS_CFG_1 [124]	
Table 140 Table 141	PCS_CFG_2 [1.24]	
Table 141 Table 142	PCS_CFG_3 [124]	
Table 142 Table 143	PCS_CFG_4 [124] PCS_CFG_5 [124]	
Table 143 Table 144		
Table 144 Table 145	PCS_IP [1.24]	
Table 145 Table 146	PCS_IM [124]	130
Table 140 Table 147	PACING_PRI_WM [07] [124]	
Table 147 Table 148	PACING_RATE [124] PACING_STAT [124]	
Table 148 Table 149	MAC CFG 1 [124]	
Table 150		
Table 150 Table 151	MAC_CFG_2 [1.24]	
Table 151 Table 152	MAC_CFG_3 [124] MAC_CFG_4 [124]	
Table 152 Table 153	MAC_CFG_4 [1.24] MAC_CFG_5 [1.24]	
Table 155 Table 154	MAC_CFG_6 [124]	
Table 154 Table 155	TX PRI MAP 1 [124]	
Table 155 Table 156	TX PRI MAP 2 [124]	
1000 150	$1/X_1 \times 1/1/X1_2 [127]$	140

Table 157	MAC_STATUS [124]	141
Table 158	MAC_IP [124]	141
Table 159	MAC_IM [124]	142
Table 160	EPL_INT_DETECT [124]	142
Table 161	EPL_LED_STATUS [124]	142
Table 162	STAT_EPL_ERROR1[124]	
Table 163	STAT_EPL_ERROR2[124]	143
Table 164	STAT_RX_JABBER [124]	
Table 165	STAT_TX_CRC [124]	143
Table 166	STAT_TX_PAUSE [124]	
Table 167	STAT_TX_BYTECOUNT [124]	143
Table 168	SCAN_FREQ_MULT	144
Table 169	SCAN_CTRL	144
Table 170	SCAN_SEL	144
Table 171	SCAN_DATA_IN	
Table 172	SCAN_DATA_OUT	144
Table 173	FM2224 XAUI Signal Pins	
Table 174	FM2224 High-Speed Clock Signal Pins	
Table 175	FM2224 CPU Interface Signal Pins	149
Table 176	FM2224 DMA Pins	150
Table 177	FM2224 SPI Interface Signal Pins	
Table 178	FM2224 LED Interface Signal Pins	151
Table 179	FM2224 JTAG Interface Signal Pins	151
Table 180	FM2224 Miscellaneous Signal Pins	152
Table 181	FM2224 Asynchronous Interface Signal Pins	152
Table 182	FM2224 Power Supply Signal Descriptions	
Table 183	Package Ball Assignment in Numerical Order	154
Table 184	Package Ball Assignment per Functional Group	
Table 185	Dimensions Used in Figures	
Table 186	Alphabetical Listing of BGA Heat Sink Vendors	167

1.0 Introduction

1.1 Product Overview

The FM2224 is a fully-integrated, single-chip 24-port 10G Ethernet layer-2 switch chip that offers wire-speed performance, extremely low-latency characteristics, and leading power efficiency. With its robust layer-2 switching capabilities and the ubiquity of Ethernet, the FM2224 fits comfortably in a number of existing and emerging applications. And, with the unprecedented level of integration, the FM2224 removes the cost, area, and power barrier for rapid and far-reaching 10G Ethernet deployment.

1.1.1 Applications

With unprecedented integration, performance, power efficiency, and latency characteristics, the FM2224 can be used for a variety of infrastructure and interconnect applications, some of which include:

- Blade computer and IP storage platform internal fabric
- Data center cluster interconnect (clustered computers and storage resources)
- Enterprise stackable switch (performance workgroups and workgroup aggregation)
- AdvancedTCA backplane fabric (star or mesh architecture)
- AdvancedTCA carrier card switch (interconnecting mezzanine cards)
- Proprietary system backplane fabric

1.1.2 Features

The following are the general features of the device:

Interface Features

- 24 10G Ethernet interfaces (802.3ae), configurable as follows:
 - XAUI (10GBase-CX4 compliant)
 - 1G Ethernet (SGMII, 1000BASE-X)
 - 2.5G Ethernet
 - XAUI overspeed up to 12.5Gbps
 - 10/100M Ethernet
- Link Aggregation (802.3ad)
- Multi-point Link-Ag extensions
- PAUSE flow control (802.3x)
- Inter-frame gap stretch (Rate Control)
- Fulcrum extensions to support complex topologies and large-

Chip Performance

- 240 Gbps bandwidth
- 300M FPS
- Low-latency cut-through switching: 200 ns @ 10G, 650 ns @ 1G.

Switch Element Features

- Centrally-buffered, fully provisioned, non-blocking, shared memory switch with ideal transfer characteristics
- 2x internal switch fabric overspeed
- ³/₄ TB of shared memory bandwidth
- 600 MHz memory event rate
- · Full speed multicast

Congestion Management

scale applications

Security

- MAC address security
- Port access control (802.1x) Bridge Features
- 16K entry MAC address table
- Spanning Tree (802.1D, s, w)
- VLAN, priority (802.1Q, P)
- 4K VLAN table
- Link Aggregation (802.3ad)
- Duplex Flow Control (802.3x)
- All IEEE protocol traps
- User-defined monitoring and filtering rules
- RMON, and Fulcrum statistics Test Features
- JTAG and boundary scan support
- Interface field loopback and BIST

• Egress scheduling of 4 traffic classes

- Shared and private watermarks
- WRED on 16 priorities
- Priority regeneration

Control Features

- 32-bit standard CPU interface
- SPI EEPROM interface
- Standard LED interface
 Physical
- 1.5W per active interface
- Power scales linearly on activity
- 130 nm CMOS process technology
- 1,433-ball BGA package

1.1.3 Ethernet Interface Flexibility

The FM2224 contains 24 interfaces, each of which can be independently configured to support one of the following modes:

- 10G Ethernet: XAUI interface, with 10GBase-CX4 compliance (accomplished with four SerDes pairs operating at 3.125 GHz, with 8b/10b encoding)
- 2.5G Ethernet: Pre-standard implementation (accomplished with a single SerDes pair operating at 3.125 GHz, with 8b/10b encoding)
- 1G Ethernet: SGMII and 1000BASE-X compliance (accomplished with a single SerDes pair operating at 1.25 GHz, with 8b/10b encoding)
- User-configurable mode: The FM2224 can support two input reference clocks, each operating up to 400 MHz. Each of the device's 24 interfaces can independently select one of the two reference clocks. Additionally, each interface can be configured to have one or four SerDes pair(s) active. So, as an example, given two input clocks of 312.5 MHz and 400 MHz, each interface can be independently configured to support data rates of 2.5 Gbps, 3.2 Gbps, 10 Gbps, and 12.8 Gbps.

When all interfaces are set to the same operating mode, the FM2224 performs as a cutthrough switch. When interfaces are configured for different modes, the FM2224 performs a store-and-forward function on the link pairs that don't have matching clock rates to avoid buffer over-runs and other congestion due to interface rate mismatch.

1.1.4 Control and Test Interfaces

The FM2224 also contains a standard 32-bit address/data processor bus interface that is used to read and write all Control Status Registers that control the chip configuration and

Fulcrum Confidential

operation, and also to obtain status and to debug the chip. This CPU interface can be configured to support a variety of commercial processors including the Motorola MPC8260, and MPC860, IBM PowerPCs with an EBC bus, and various I/O bridge chips (such as the PLX 9030 PCI bridge chip from PLX Technologies). The different modes are supported through pin strapping options. This CPU interface operates up to 100 MHz.

Additionally, the FM2224 contains an LED interface that can be connected to external LED driver chips to provide port- and system-level status and activity via front-panel LEDs.

Lastly, the FM2224 implements an industry-standard JTAG controller for test and design debug. The JTAG controller can access boundary scan registers and all internal registers.

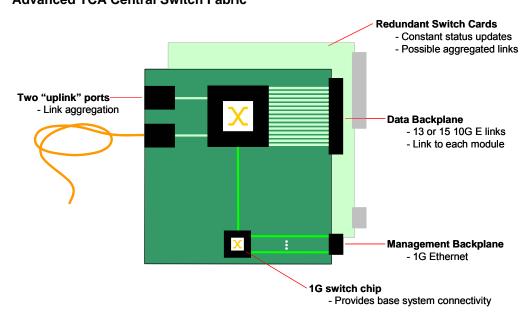
1.2 Application Examples

With unprecedented integration, performance, power efficiency, and latency characteristics, the FM2224 can be used for a variety of infrastructure and interconnect applications, some of which include:

- Blade computer and IP storage platform internal fabric
- Data center cluster interconnect (clustered computers and storage resources)
- Enterprise stackable switch (performance workgroups and workgroup aggregation)
- Advanced TCA backplane fabric (star or mesh architecture)
- Advanced TCA carrier card switch (interconnecting mezzanine cards)
- Proprietary system backplane fabric

The FM2224 is a versatile device that can be used in a variety of applications where efficient Ethernet packet switching is the method of choice for interconnecting the elements in a system. The following subsections detail some of the common applications that the FM2224 is capable of supporting, and identifies some of the device's capabilities that are relevant for each application.

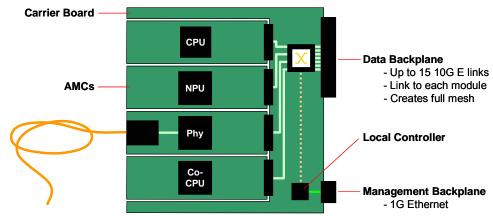
1.2.1 Advanced TCA Chassis Switch


The FM2224's high level of integration (high port count) makes it a great fit for the Advanced TCA chassis (including the 14-slot, 19"-rack version and the 16-slot, 23"-rack version, as well as the smaller variants). With 24 ports, the device can physically support any common switching method: central switch fabric (dual star or dual-dual star), fully-meshed backplane, and replicated meshes.

1.2.1.1 Central Switch Fabric

In this application, typically two slots in the chassis are populated with switch fabric cards that provide point-to-point connections to all other cards in the chassis. The two switch elements can be configured to either load balance or to provide fail-over redundancy. In some cases, available switch ports are used for uplinks to other systems outside of the platform.

FocalPoint FM2224 Advanced Information Data Sheet Figure 1 Advanced TCA Central Switch Fabric


Key Capabilities

- Link aggregation on the uplink ports
- Interfaces configurable for 1G Ethernet support for glueless connection to the 1G Ethernet base fabric
- Fail-over redundancy from one switch element to the other, using a method of polling status information between the two switch elements, and rapidly switching traffic from one element to the other.

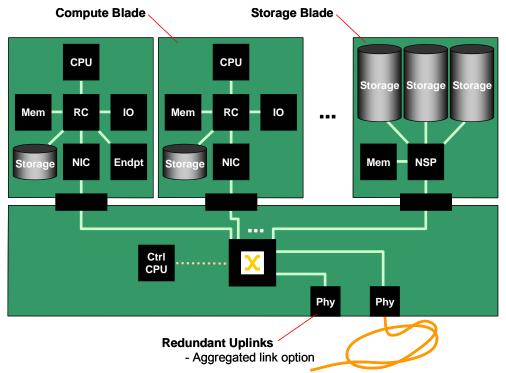
1.2.1.2 Fully-Meshed Backplane

In this application, each node card contains an FM2224 that connects that card with every other card in the chassis in a full 10G mesh configuration. The remaining switch ports are used to provide switching between all of the elements on the node card (e.g., interconnection between Advanced Mezzanine Cards on a Carrier Card). This example combines the full mesh architecture with the Advanced Mezzanine Card (AMC) architecture. With 24 ports, the FM2224 offers optimal connectivity between all of the system cards, providing the most flexible, scalable, and resilient base architecture for building virtually any kind of communications or computing system.

Figure 2 Advanced TCA Node Card Switch (Full Mesh)

Key Capabilities

- Mesh-based address resolution, where connections between switch elements are terminated at the endpoints.
- Similarly for multicast and broadcast traffic, switch elements can propagate multicast and broadcast traffic received from another slot only to its local endpoints to avoid self-inflicted broadcast storms.

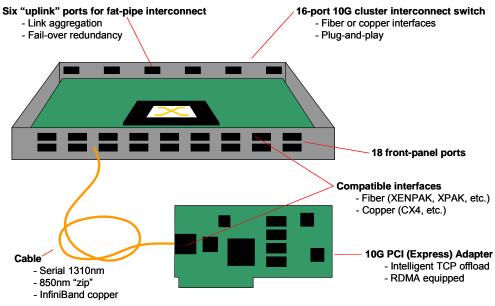

1.2.2 Modular/Blade Computer Switch Fabric

Blade computing has exploded onto the scene in recent years as a cost-effective and scalable method for building large-scale computing and storage infrastructures. And, Ethernet is emerging as the de facto method for interconnecting compute components in the chassis. The FM2224's low latency and high level of integration make it a perfect complement to the emerging endpoint devices that are more-and-more efficiently converting Ethernet to CPU-native interfaces (such as PCI Express, HyperTransport, and RapidIO).

Figure 3 shows a simple example of a multi-host computing platform that leverages switched Ethernet as the local host-to-host interconnection as well as the external link to other computer room systems.

Figure 3 Blade Computer Switch Fabric

Key Capabilities


- Low latency.
- Multiple uplinks providing redundant (or load-balanced) connections to the rest of the computer room. On link failure, the ability to efficiently and automatically switch traffic (or migrate active traffic) to the remaining link.
- Traffic classes, and enforcement of priorities, to efficiently intermix transaction and data types (e.g., bursty network access with local streaming to disk or tape).
- Ethernet extensions enabling support of advanced topologies, such as mesh and fat trees.

1.2.3 Compute Cluster Interconnect

In this example, the FM2224 is used as the core of an Ethernet switch optimized for efficiently interconnecting multiple compute systems in a cluster. For cluster computing, latency, performance, resiliency, and scalability are the key factors.

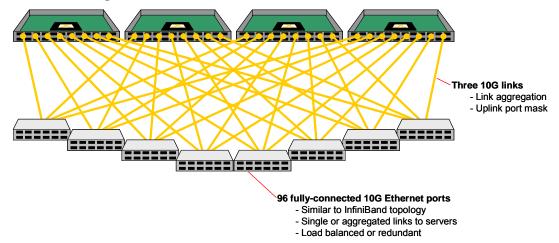


Figure 4 Compute Cluster Switch

The FM2224 can address scalability, resiliency, and system-level performance by supporting fat-tree (federated switch) architectures, as is shown in Figure 5. In this example, 96 10G Ethernet ports are available for interconnecting compute resources, without introducing any blocking.

Figure 5 Fat-Tree Configuration of Cluster Switches

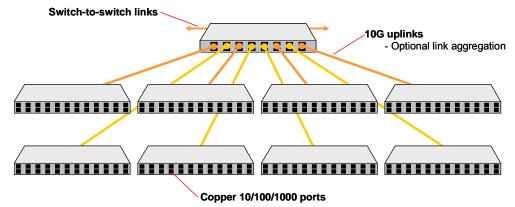
The same system architecture can be implemented in a single chassis, providing additional cost reduction, modularity, and resiliency. Figure 6 shows an example of a 96-port 10G Ethernet switch platform with CX-4 interfaces, using 12 FM2224 chips. Similarly, a 144-port system can be configured with 18 chips and a 288-port system with 36 chips.

Figure 6 Fat-Tree Configuration in a Box

144 fully-connected 10G Ethernet ports

- Similar to InfiniBand topology
- Single or aggregated links to servers
- Load balanced or redundant

Key Capabilities


- Low end-to-end latency.
- Hardware extensions, such as multi-port link aggregation and uplink/downlink port association, that allow fat-tree connectivity without creating unwanted loops.
- Ports can operate at 1Gbps for mixed-speed applications

1.2.4 Stackable Workgroup Aggregator Switch

The compute cluster switch (perhaps with different port configurations and interface options) can be used as a cost-effective method for aggregating dense workgroups of 10/100/1000 Ethernet users. The FM2224 can support VLANs and VLAN stacking to preserve workgroup and user associations.

This example shows the same stackable switch being deployed as an aggregator of multiple 10/100/1000 workgroup switches.

Figure 7 Aggregator for Stackable 10/100/1000 Switch

Key Capabilities

- Link aggregation, with the ability to aggregate the uplink ports as well as multiple instantiations of two user ports (to support either link redundancy or higher throughput links) to each connected stackable switch.
- VLAN preservation and stacking to maintain workgroup separation as defined by the workgroup switches.

1.2.5 Applications Summary

Summarizing, with a rich set of features, and unprecedented performance and integration, the FM2224 can be used cost-effectively (and to deliver differentiation) in a variety of Ethernet switching applications in both the communications and computing markets. And, as is the case with Advanced TCA, the FM2224 can provide a platform for accelerating the convergence of the two markets and related applications.

1.3 Supported Standards and Specifications

The following standards and specifications are supported by (or otherwise relevant to, as noted) the FM2224:

IEEE

- 802.3
 - 802.3-2002
 - 802.3ae
 - 802.3z
 - 802.3ak (CX4)
 - 802.3ad
- 802.1
 - 802.1D (2004)
 - 802.1Q (2003)
 - 802.1p
 - 802.1s
 - 802.1w
 - 802.1X

1.4 Definitions

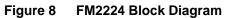
The following are terms that are relevant for the FM2224, and which are used throughout this document to describe the features, functions, configuration, and use of the FM2224.

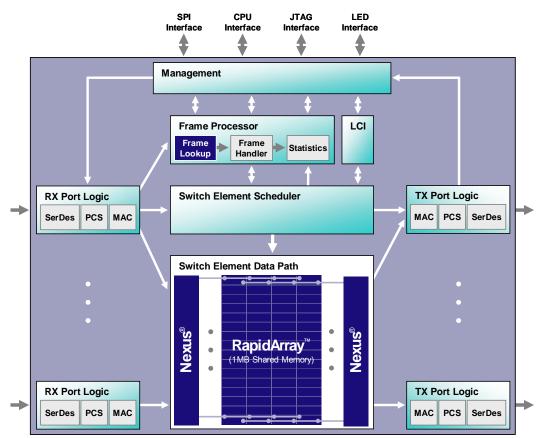
Interface	Generic term referring to a single logical implementation containing a transmit and receive data path. The FM2224 contains several interface types (XAUI, JTAG, CPU, LED, etc.).
Port	Refer to the definition of "Interface" above. Used interchangeably with "interface", although used more frequently to identify a specific physical implementation – rather than a generic logical implementation. As examples of how both are used: "The FM2224 contains 24 10G Ethernet interfaces"; "Make sure the port is enabled before sending data".
XAUI	Ten-Gigabit Attachment Unit Interface, defined by the IEEE as an interface extender for XGMII (the ten-Gigabit Media Independent Interface).
CX4	Used generically in this document to refer to the ten-Gigabit copper interface extensions made to XAUI (and defined by IEEE as 10GBase-CX4) to support copper "CX4" cables. The interface is intended to connect servers or switches over short distances - up to 50 feet.

CSR (Register)	Control Status Register used for configuration, status reporting, and debug.
Nexus	Fulcrum's Terabit fully-connected non-blocking crossbar; Nexus is used to make the Terabit non-blocking shared memory switch element.
Queue	Conceptually, a temporary packet storage element in the shared memory (a.k.a., FIFO). In the FM2224, each frame has multiple queue associations in the memory, and that association is used for congestion management and scheduling.
Cut Through	A switching mode or architecture where the switch can begin transmitting the packet as soon as the destination port is known, without waiting for the end of the frame to arrive.
Store-and-Forward	A switching mode or architecture where the packet is first copied to memory (stored) in its entirety before being delivered (forwarded) to the destination port. This mode is typically used to forward between ports of different speeds or to ensure frames with bad CRC are discarded immediately.

2.0 Architectural Overview

2.1 Principles of Operation


The FM2224 is an IEEE-compliant Ethernet bridge. For an in-depth discussion of the principles of operation, see Clause 7 of the IEEE 802.1D-2004 specification.


2.2 Architectural partitioning

FocalPoint is architecturally partitioned into five major blocks, as shown in Figure 8. They are:

- Ethernet Port Logic (EPL), RX and TX.
- Frame Processor (FP)
- Switch Element Data Path (SEDP)
- Switch Element Scheduler (SES)
- Management (MGMT)

This partitioning was designed specifically to attain high throughput, high port density, low latency, and low power in a single integrated device.

Ethernet Port Logic (EPL)

The Ethernet Port Logic (EPL) is the per-port replicated block. It is purposely designed to be as "thin" as possible to enable the FM2224 to scale -- practically -- to 24 ports. The EPL contains only the essential features to identify a packet and its header, parse the information appropriately, and stream the information to the correct location. The EPL implements the PMA and PCS layers, and it further checks each frame for various errors, including length and frame errors. The packet data is buffered into a 64-byte segment for streaming into the switch element at the Nexus data rate (30 Gb/s per port), beyond which the EPL is purely cut-through. The header is parsed and sent to the frame processor. On TX, the EPL collects tag information from the scheduler and uses that to perform VLAN egress tagging.

Frame Processor (FP)

The Frame Processor (FP) is a centralized and highly-optimized pipeline that implements all of the complex frame relay policy and congestion management functions, and keeps statistics for activity across the entire chip. Once a reservation has been set, the frame processor pipeline is deterministic, producing one header per clock, and no further queuing is required. It takes a header as its input and produces a forwarding mask 6 clocks later – at full line rate for up to 24 ports. It processes the destination MAC address, source MAC address, VLAN, and Spanning Tree protocol. In addition, it checks security and reserved traps, and updates the MAC Address table. It receives queue status from the switch element scheduler and determines whether to discard frames or pause inputs on a frame's ingress. And finally it manages the link aggregation groups.

Switch Element Data Path (SEDP)

The switch element is a fully-provisioned, centrally-buffered switch with ideal transfer characteristics. It consists of the switch element datapath and scheduler.

The Switch Element Data Path (SEDP) is a shared memory structure constructed from Fulcrum's proprietary crossbar and memory technology. The memory delivers approximately three-quarters Tb/s of bandwidth, necessary to support sustained transfer of the worst segment corner case of 65-byte frames. Though it uses crossbars it is not a "crossbar-based" switch; it is centrally buffered. On ingress, frames are streamed in from the 24 EPLs through a crossbar, in a non-blocking fashion, to 16 banks of 64 kB of memory (1 MB total), where they are kept while the headers are queued and scheduled. Each 64-byte segment from the EPL is striped across the 16 32-bit banks of memory (512 bits at a time). Another crossbar then connects the 16 banks of memory back out again to the 24 ports on egress, permitting a non-blocking transmission of scheduled frames, with no multicast replication bottlenecks.

Switch Element Scheduler (SES)

The Switch Element Scheduler (SES) manages the frame data in the switch element datapath and communicates with the frame processor and switch element datapath. It performs a time-sliced arbitration algorithm to schedule frames streaming across the ingress crossbar. It then represents the frame as a linked list of pointers that may exist anywhere in the memory, allocating pointers on ingress, and freeing pointers on transmission. (A pointer points to a group of four segments, allowing a maximum of 4096 packets in the switch at one time.) The SES queues out-of-band frame information that travels along with the packet and comes from the frame processor, and it queues the segment pointers. It manages multicast replication, as pointers are forwarded from an RX queue to a TX queue. Frames marked with errors, from either the EPL or the FP, are discarded if the frame has not yet been transmitted. If the frame has been partially transmitted, then it is forced to have a bad CRC. The frames are scheduled for egress transmission according to a number of selectable algorithms, including strict priority and weighted round robin. Frames are associated with three queues: RX port, TX port, and

shared memory. The queue status is reported to the frame processor for its use in congestion management decisions for pause and discard.

Management (MGMT)

The Management block (MGMT) contains slow interfaces to access and configure the device. It allows the FM2224 to communicate with a host. There is an internal management bus that matches the slow rate of the management interface to all of the different high-speed blocks in the device. The management block cannot get involved with the actual line rate forwarding activity, but it otherwise has a high degree of visibility into the device.

2.3 In-depth Architecture

This section is intended for the curious system architect who wants to understand and/or validate the performance of FM2224 with an in-depth analysis of the architecture. This section is not necessary to successfully operate the FM2224.

2.3.1 Clock Domains

The FM2224 is based on the model of GALS (globally asynchronous locally synchronous). In this model, a fundamental block is built with a standard ASIC design process, creating a synchronous fixed-function block. These blocks employ a protocol on their interfaces that allows them to safely communicate without a specified event rate or phase relationship to other blocks. From the system-level perspective one block's synchrony is contained entirely within the block itself, forming fully-independent clock domains. This allows each block to run at the optimal clock rate for its function, for example 312.5 MHz Ethernet Port Logic (EPL), 270-360 MHz Frame Processor (FP), and 66 MHz Management (MGMT) logic. There are no timing constraints between the blocks; they are truly independent oscillators in both frequency and phase.

There are three independent synchronous blocks in the FM2224:

- Ethernet Port Logic (EPL)
- Frame Processor (FP)
- Management unit (MGMT)

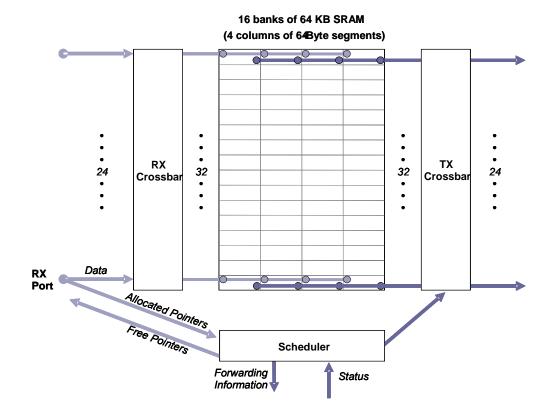
The EPL is replicated 24 times in the design. Thus there are 26 independent clock domains (excluding blocks used for test). Each EPL can operate up to 400 MHz. The FP pipeline operates at 270 MHz to 360 MHz, depending on the frame rate chosen. The Management block operates at 33 MHz to 66 MHz, which is user selectable. There are no per-frame actions performed by the Management block, except frames sent or received from the host.

Fulcrum's high-performance logic and memory is used to implement the asynchronous interconnect between the clock domains, where it provides a performance and integration advantage.

There are four significant asynchronous logic blocks:

- · Header aggregator interconnect between EPL and FP pipeline
- MAC address table
- Switch Element Data Path
- Switch Element Scheduler

The header aggregator serializes the header processing requests of 24 EPLs to the FP so that logic for the extensive Ethernet features are instantiated once at a required processing rate of 270-360 MHz. The EPL sends two messages per frame, one at the beginning of



the frame with the header information and one at the end of the frame that signals frame length and error conditions. These requests appear at a worst-case event rate of 540-720 MHz. They appear non-deterministically, given the independent clock domains of the EPL, and they must be arbitrated into a single frame processing pipeline. Since the average-case packet rate is a factor of 10-20 less then the worst case packet rate in Ethernet, this asynchronous circuitry greatly improves frame processing latency and reduces power – the circuit can support the worst-case event rate, but doesn't consume power unless it is active, and then only to the extent that it is active.

The MAC Address table contains 16K – 12-byte MAC address lines. Both the destination and source addresses are searched each packet creating an event rate of 540-720 MHz on a 176 KB memory, excluding learning updates. The table is therefore implemented asynchronously, leveraging Fulcrum's high performance memory.

The Switch Element Data Path and Scheduler are based on 1 GHz crossbars and 600 MHz asynchronous SRAMs. This circuitry has very little protocol calculations, and must meet challenging throughput and latency goals while dissipating little power.

2.3.2 Switch Element

Figure 9 FM2224 Switch Element Architecture

2.3.2.1 Shared Memory

A frame is stored as a linked list of separate fixed-size non-consecutive segments of memory. The switch element makes no restrictions on which ports may use what memory locations. The ingress port is given pointers to these segment locations as they free up and as the port needs them. The frame is streamed into memory and stored while

the switch makes its forwarding decision. The frame is then scheduled to none, one or many egress ports.

The segment size and segment block size are important in determining the required performance of the switch element and in understanding the maximum storage capacity of the switch. A frame is processed 64 bytes at a time. The absolute worst-case segment rate occurs when all frames are 65 bytes in length and all ports are utilized at 100% capacity. This creates a segment rate of 720 MHz for a 24-port switch, assuming minimum inter-frame gap. A memory pointer references a block of four segments, or 256 bytes. Any frame that is less than 256 bytes will still consume 256 bytes of memory. In general, the memory that a frame consumes is its frame length rounded up to an integral multiple of 256 bytes. The switch element meets the minimum processing rates for frames, segments, and segment blocks to be fully provisioned in the theoretical worst case of 24 ports. FocalPoint may hold up to 4K frames at any one time assuming the aggregate frame storage does not require more than 4K segment blocks.

The circuit-level architecture challenge arises from the requirements:

- 0.723 Tb/s shared memory bandwidth
 - 240 Gb/s second cross-sectional bandwidth (183.5 Gb/s for 65 byte frames)
 - Read + Write any memory element every cycle
 - Frame/segment granularity efficiency (51% worst case)
- · Low latency application requirement
- 1 MB of on-chip frame memory
- Modest power budget
- Modest area budget

Significant parallelism and careful striping makes the challenge feasible with Fulcrum's high-performance memory technology. Without introducing any corner cases, the memory may be written 512 bits at a time across 16 32-bit banks of memory. This brings the 0.723 Tb/s memory requirement down to a 706 MHz event rate (accounting for both a read and a write). Increasing the cell size to 128 bytes and striping across a 1024-bit memory would reduce the maximum segment rate down to 402 M segments per second (still requiring > 400 MHz memory), but at the cost of an extra 51.2ns in latency, an increase in the total required memory bandwidth to 0.825 Tb/s and a doubling of the crossbar port count and wiring.

2.3.2.2 SRAM and Crossbar Building Blocks

Fulcrum's asynchronous SRAMs and crossbars provide key advantages to meeting the challenge of doing a low latency Tb/s shared memory.

The fundamental unit of any shared memory switch is the SRAM building block. In FocalPoint, this is a 16 kB memory consisting of 4000 lines of 32-bit words. It is based on foundry-provided standard and reliable 6T SRAM state bits. With custom logic, the overall SRAM achieves > 600 MHz per single-ported bank. Frame memory must be read and written once per cycle, often requiring the use of dual-ported SRAM. However, in FocalPoint, the 600+ MHz single-ported performance is converted into worst-case 300+ MHz read + write. There is an additional performance gain in banking buses internal to the SRAM block, but it is not relied on in worst-case calculations.

Single-ported memory is much smaller and more reliable than multi-ported memory structures, leading to a significantly more manufacturable device.

The required bandwidth in a dense 10G shared-memory switch is so high that buses are no longer adequate. Crossbars create private point-to-point connections between the port

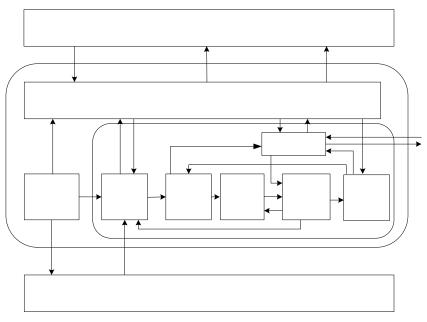
logic and the memory banks. They provide increased bandwidth and reduced power over bus-based architectures.

The FocalPoint Switch Element Data Path uses Fulcrum's Nexus crossbar, an asynchronous circuit with many significant properties:

- 24 Gb/s per port cross-sectional bandwidth
- 3 ns fall-through latency including link initialization and tear-down
- Area approximately 20x smaller than an SoC interconnect implemented with a standard flow
- Power dissipation that scales with usage only; no overhead but leakage. And power that is significantly less than the power of a shared bus.

The bandwidth requirement on the crossbar is different from that in the SRAM. The crossbar delivers the 64-byte segment to the memory in 1/(segment rate) = 33.6 nS. For a 32-bit datapath, the delivery of the segment takes 16 cycles, or a performance requirement of 476 MHz port speed.

The GHz crossbars in FocalPoint have about 2x more bandwidth than is necessary to meet worst-case event rates. This overspeed is useful. It reduces overall latency and provides added margin. In addition, it enables a high bandwidth mode in which performance is met statistically. This allows the device to be run at lower voltage for applications that are more sensitive to power than theoretical worst-case guaranteed performance.


2.3.3 Switch Element Scheduler

The scheduler performs the following functions:

- Tracks pointers
- Arbitrates packet entry into the Switch Element Data Path
- Receives per-frame information from the Frame Processor
- Schedules frames from Rx queues to TX queues based on forwarding decisions, including TX multicast replication
- Provides egress scheduling of frames per TX output.
- Delivers out-of-band information to Ethernet Port Logic, such as new VLAN tag, source port, etc.
- Spools segments during frame transmission
- Frees segments after transmission and re-allocates them to new frames
- Reports the status of the pointers as they contribute to global shared occupancy, RX port and TX port association, for use in the congestion management calculation in the frame processor
- Provides rate matching between different speed ports

Figure 10 Switch Element Scheduler

2.3.3.1 Ingress Arbitration

When a frame first arrives at the Switch Element, an arbitration request is started for access into the switch, since in the general case multiple ports could have pointers that refer to the same bank of memory. Once that arbitration is granted, a "time slot" is granted to the port. Each consecutive bank of memory is then scheduled in order during the entire frame transmission. Thus the only arbitration and statistical delay occurs at the head of the frame. The arbitration loop cycles through all 24 ports in a worst-case timing of 33.6 nS. This comes from assuming the worst-case segment rate on all ports, and leads to a requirement that the segment scheduler operates at 720 MHz or greater. The arbitration delay adds 33.6 nS of fall-through latency in the worst case, but in the average case, and with the overspeed built into the system, it adds less than 10 nS.

2.3.3.2 Congestion Information

The segment utilization is reported for RX and TX ports. And the amount of memory that is deemed to be "shared" is also reported to the Frame Processor for congestion management. To reduce the event rates of the congestion management calculation, the granularity of this reporting is on 1 kB blocks (16 segments).

2.3.3.3 Rate Matching and Cut-Through

The Switch Element Data Path natively handles matching rates of varying ports. However, as a limitation of Ethernet, when a slower port talks to a faster port, that transaction must be performed in store-and-forward mode to avoid Tx FIFO under-run. Accordingly, there is an N-squared 1-bit matrix which configures whether each port pair should be scheduled in cut-through mode or store-and-forward mode. While, the switch element is natively cut-through, when the bit for the port-pair-direction is set, the "storeand-forward" process of Figure 10 allows the switch element to delay egress scheduling until the entire frame has entered memory.

RX Co

Me

Allo

2.3.3.4 Rx and Tx Queues

A frame is eligible and its pointers are placed in "Rx queues" once it has passed the "store-and-forward" process having either one complete 64-byte segment in the Switch Element Data Path in cut-through mode, or the entire frame in the data path in store-and-forward mode. There is adequate storage in Rx queues for all of 4000 frames (the maximum) to be stored in the switch element with their pointers in Rx queues.

Once the destination is known from the frame processor, the pointers in Rx queues are forwarded to Tx queues. While a multicast frame only ever exists in one place in the frame memory, the pointer to that frame is replicated for each port in Tx queues. This is done such that it is always possible to saturate all of the output bandwidth of the switch with multicast traffic while continuing to receive full rate.

Once all of the pointers in Tx queues that refer to the same frame have an indication for transmission, then the memory segments for that frame are freed, and new frames may occupy the memory locations.

2.3.3.5 Egress Scheduling

The "QCache" process in Figure 10 schedules the next frame for transmission. It walks through all of the ports on the same 33.6 nS time cycle as the ingress arbitration. There are 96 queues in the "QCache" of a 24-port FocalPoint device. There are four fabric priorities for each output port. The next frame of all 96 queues is stored in Qcache. This caching is necessary to reduce the latency through the scheduler, and to meet the frame rate of scheduling 270-360 M frames per second.

2.3.4 Frame Processing

The frame processing pipeline is architected to achieve two performance goals and organized to implement efficiently the complex Ethernet features in FocalPoint. It forwards one frame per clock at a maximum rate of 360 MHz. It produces its forwarding decision with less latency than it takes to store the first segment of the frame into the switch element for most traffic patterns. Thus the processing of the Ethernet features above the PCS layer of the protocol don't affect the latency of FocalPoint. The frame processing pipeline is shown in Figure 11.

The aggregation of frame handling requests from the EPL and the lookups are performed in the Lookup sub-block of the frame processor. There are four lookups per frame: source address and destination address in the MAC address table, and VLAN and Spanning Tree state in the VLAN ID table. This requires a maximum data rate of 720 MHz for a fully-provisioned 24-port device. All of the table data is loaded and then passed directly to the Frame Handler to determine the action on the frame. From time to time, learning requests come back from the Frame Handler to the Lookup. A forwarding decision in cut-through mode happens before a good CRC is known. A learning event only happens after a frame is known to have a good CRC. Learning can happen at line rate under most circumstances. However in general usage models it only needs about a KHz frequency.

The Frame Handler is an ASIC-based rules machine for frame processing. There is a notion of precedence in frame processing. The switch only takes one action on a frame. So if a frame is discarded because the port is in the spanning tree discard state, it does not matter, and it is not tracked, if there are other violations associated with the frame. Any action that the frame processor takes is counted in the Statistics block. There is full RMON support in the Statistics block, as well as statistics for all of FocalPoint's custom features. There are 13 independent groups of statistics. No more than one counter in a group is updated per frame. All of the statistics are gathered in such a way that they never experience an event greater than the maximum frame rate of FocalPoint. All

statistics are 64 bits so that there are no event rate requirements on the rate at which the CPU polls the statistics.

SE / Scheduler Forward DA, SA, VLAN **Queue Status** (destination, tags, priority) Frame **Statistics** Lookup Handler . MAC Table RMON, . 24 **VLAN** Table VLAN, Priority, Security, Flows, . Filter, WRED WRED, . (540-720 MHz) (270-360MHz) VLAN **Frame Processor**

Figure 11 FocalPoint Frame Processor Architecture

3.0 Functional Description

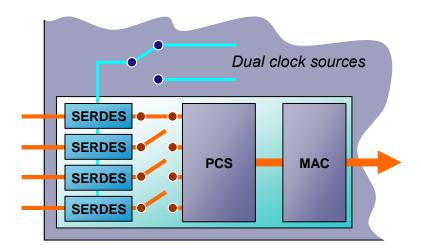
This section describes in detail the features and functions supported by the FM2224. For a detailed description of the unit-level partitioning of the device, see Figure 8 in Section 2.0.

3.1 Ethernet Port Logic (EPL)

The FM2224 contains 24 Ethernet Port Logic transmit and receive pairs; each pair contains the SerDes, PCS, and a portion of the MAC functionality.

3.1.1 Port and Lane configuration

{Registers described in Table 131.}


Each interface can be independently configured to have one or four lanes active.

With this combination of configuration parameters, the FM2224 can be configured to support an arbitrary mixture of 1G, 2.5G, and 10G Ethernet ports, as well as any other 1-lane or 4-lane rate, within the supported frequency range of the EPL interface.

For convenience of the board layout, lane reversal is supported, which means that for each port "Lane 0" to "Lane 3" is either interpreted as an increasing order or a decreasing order. So that 1G and 10G modes can be soft selectable on the same interface, the lane reversal also effects whether "Lane 0" or "Lane 3" is used as the single active SerDes to support 1G mode.

Figure 12 shows an example of an interface configured with one lane active, connected to the first high-speed clock source.

Figure 12 Ethernet Port Logic Functional Blocks

3.1.2 SerDes

{Registers described in Table 129 through Table 138.}

Each of the twenty four ports contains a block of four SerDes (Serializer-Deserializer pairs). Four pairs of independent high-speed clock sources, each of which can operate at any rate from 100 MHz to 400 MHz, may independently service four groups of interfaces, as shown in Table 1. Each of the 24 ports can independently select from

Fulcrum Confidential

among the two clock inputs routed to it by setting the corresponding bit in the PORT_CLK_SEL register (Table 44). Since both the serializer and deserializer in a SerDes utilize the same clock, the Tx and Rx sections of an interface cannot operate at different frequencies.

Table 1 Reference Clock to Port Correspondence

RCK1AP/N	Ports 2, 4, 6, 8, 10, 12
RCK1BP/N	10105 2, 4, 0, 0, 10, 12
RCK2AP/N	Dente 14, 16, 19, 20, 22, 24
RCK2BP/N	Ports 14, 16, 18, 20, 22, 24
RCK3AP/N	D 4 12 15 17 10 21 22
RCK3BP/N	Ports 13, 15, 17, 19, 21, 23
RCK4AP/N	
RCK4BP/N	Ports 1, 3, 5, 7, 9, 11

The per lane data-rate on the "8b" side is a factor of 8 greater, yielding 800 Mb/s to 3.2 Gb/s of actual data throughput, and on the "10b" side this gives 1 Gb/s to 4 Gb/s of serial data per lane.

3.1.2.1 Compatibility

The SerDes interface is electrically compatible with the following standards and specifications:

- 1G Ethernet
 - IEEE 802.3ad, 1000BASE-CX
 - SGMII
- 10G Ethernet
 - IEEE 802.3ae, XGXS (XAUI)
 - IEEE 802.3ak, 10GBASE-CX4
- Ethernet at a user-configured rate
 - As an example, 2.5G Ethernet through the use of a single SerDes pair

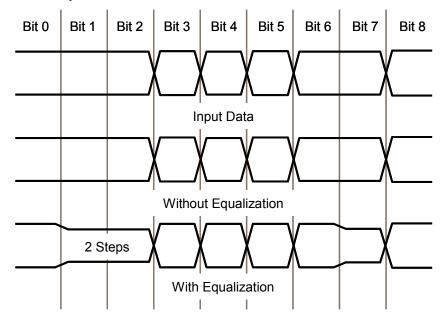
3.1.2.2 Phase-Locked Loop (PLL) and Reference Frequency

The electrical specifications for the clock are described in Section 3.6.1.

Using a divide-by-5 ratio, the PLL has a frequency of operation from 500 MHz to 2 GHz. The data is double pumped off of the voltage-controlled oscillator. The PLL does not need to support 1G operation from the same clock source that supports 10G operation as that feature is achieved through the use of the second off-chip reference clock.

3.1.2.3 Transmitter Drive Current

The nominal SerDes output driver current is set to 20 mA by an external resistor of 1.2KW tied between the RREF pins (1 per port) and V_{DD} . A new nominal output current value of 10 mA or 28 mA may be set individually for each lane in each port by setting the corresponding High Drive and Low Drive bits in the SERDES_CNTL_2 register (see Table 131 for details).


The output currents may be further modified from this nominal value for each of the 4 lanes in each port by setting the corresponding DTX bits in the SERDES_CNTL_1 register (see Table 129 for details). Using these bits the current can be set from 60% to 135% of the established nominal value.

3.1.2.4 Transmitter Equalization (Pre-emphasis)

Each transmitter has a first-order equalization function implemented as a pre-emphasis current (sometimes termed, "de-emphasis" because the lower frequency components of the signal are reduced, or de-emphasized). Equalization helps reduce the amount of intersymbol interference by counteracting the effects of frequency dependent transmission loss. The effects of pre-emphasis are shown in Figure 13.

By setting the DEQ bits in the SERDES_CNTL_1 Register (see Table 129), the ratio of equalization current to driver current varies from 0.0 (equalization off) to a maximum of 0.65. With a setting of 0.65, for example, driver current is reduced from the nominal value (set with High Drive, Low Drive and DTX bits) by 65% for those bits where equalization is in effect. Equalization is in effect when successive 1's or 0's are sent. The first bit after a transition is not affected, but the second and all subsequent consecutive bits are affected by the drive current reduction until another transition occurs.

The overall effect of this pre-emphasis function is that of a high-pass filter, which can be used to compensate for the low-pass characteristic of transmission media. The FM2224 SerDes uses a fixed, optimized amount of Rx equalization to maximize the effectiveness of the pre-emphasis function.

Figure 13 Driver Equalization

3.1.2.5 Transmitter Output Voltage

The drivers are terminated in a 25 Ω load, obtained by two 50 Ω in parallel. The singleended voltage swing, V_{SW}, is determined multiplying the driver current, I_{DR}, by this impedance.

3.1.2.6 Driver Termination Voltage

The driver termination voltage is set by the V_{TT} pin. The common mode voltage of the transmitter, V_{TCM} , then results from the termination voltage and the single-ended voltage swing as:

$$V_{TCM} = V_{TT} - V_{SW}$$

The Output High and Output Low voltages are also determined by V_{TT} and V_{SW} :

$$V_{OH} = V_{TT} - 0.5 * V_{SW}$$

 $V_{OL} = V_{TT} - 1.5 * V_{SW}$

There is a limit placed on VSW by the V_{TT} setting. The limits on V_{SW} for various settings of V_{TT} are given in Table 2. VSW should be controlled by setting the High Drive and Low Drive bits of the SERDES_CNTL_2 register and the DTX bits of the SERDES_CNTL_1 register.

Table 2 V_{TT} and Max allowable V_{SW}

$V_{TT}(V)$	Max V _{SW} (AC, mV)					
1.0	250					
1.2	350					
1.5	500					
1.8	750					

3.1.2.7 Receiver Clock and Data Recovery

Clock and Data recovery (CDR) at the receiver of the FM2224 is dependent on two factors. One is the ppm difference in the clock frequencies between the transmitting device and the FM2224's receiver. The other is the bit transition density in the data stream.

The lock time of the CDR circuit is dependent on the ppm difference in clock frequencies and the transition density. Given a 1 in 10 transition density (XAUI signals meet this criterion), the CDR lock times are given in Table 3 for several ppm differences.

Table 3 CDR Lock Times

Clock PPM Difference	CDR Lock Time (Bit Periods)					
0	640					
± 25	684					
± 50	734					
± 100	860					

3.1.2.8 Receiver Common Mode Voltage

Receiver common mode voltage is fixed internally and set to 0.7V.

3.1.2.9 Receiver Signal Threshold

A signal detect circuit in each port indicates when the received signal strength at any one of its four inputs falls below the V_{LOS} level indicated in Table 25. When this occurs, the Signal Detect bit in the SERDES_STATUS register (Table 135) is asserted. The Signal Detect bit is not de-asserted until a configurable number of above-threshold signal cycles is reached (Table 133)

3.1.2.10 Loopback

A per-port Tx-to-Rx loopback mode is provided that, for each SerDes, loops back data from the output of the serializer to the input of its deserializer/clock recovery circuitry (see Table 134).

3.1.3 SerDes Testing

3.1.3.1 BIST

{Register described in Table 134 and Table 138.}

The FM2224 supports field operation of the BIST (Built-In Self Test).

Each SerDes lane has one (BIST) transmitter and one BIST checker. The supported BIST modes are:

- 0 Disable
- $1 PRBS(x^9 + x^5 + x^1)$, repeat every 511 cycles
- 2 High frequency test data = 1010101010
- 3 Test data = K28.5 (IDLE)
- 4 Low frequency test data = 0001111100
- $5 PRBS (x^{10}+x^3+x^1)$, repeat every 1023 cycles
- $6 PRBS (x^9 + x^4 + x^1)$, repeat every 511 cycles
- $7 PRBS(x^7 + x^1)$, repeat every 127 cycles

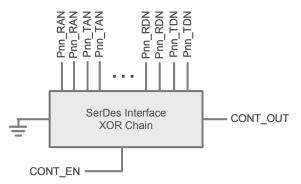
The BIST transmitters on all 4 lanes are automatically enabled when the BIST mode is set to a value different than 0. The BIST checkers are activated by writing a 0 into SERDES_TEST_MODE[BS]. The values in BIST_ERR_CNT count the number of errors received per lane.

The BIST checker will work properly only if symbols are aligned prior to start the checker. The symbol alignment is done by the PCS framer using the comma character as a reference which is the only character to use a series of five 1s or 0s in the normal flow of data. However, as the BIST transmitter may generate this test pattern, it is important to follow the following procedure:

- Obtain symbol lock prior to enabling BIST transmitter (bits 3-0 of SERDES STATUS)
- Disable PCS framer (bit 6 of SERDES_TEST_MODE)
- Set BIST mode (which automatically enabled the transmitter as well)
- Enable BIST checker (bit 5 of SERDES_TEST_MODE)
- Verify BIST_ERR_CNT to detect any error

3.1.3.2 I/O Continuity Test

In power-down mode, the SerDes I/O on each XAUI interface can be checked for solder ball to pad continuity at the package or board level. The 16 SerDes I/O ports, Pnn_R[A:D]N/P and Pnn_T[A:D]N/P on each interface numbered "nn", are connected


Fulcrum Confidential

through an XOR chain. The input to the first XOR gate in the chain is internally connected to ground, while CONT_EN is the enable input for the continuity chain and CONT_OUT is the output of the last XOR gate in the chain. The basic setup is shown in

With SerDes I/O externally set to 0, all inputs to all XOR gates are 0 and CONT_OUT is

Figure 14: SerDes continuity test

observed to be 0. Externally applying 1 to any single I/O pin will cause CONT_OUT to toggle high, confirming continuity of that pin.

3.1.4 PCS

{Registers described in Table 139 through Table 145.}

The PCS is fully compliant to the following specifications:

- IEEE 802.3ae Clause 48 (10GBase-X) specification for XAUI mode
- IEEE 802.3-2002 Clause 36 (1000Base-X) specification for SGMII mode

3.1.4.1 PCS – Frame Format

The frame format in 10G mode is show in the next table. The value of Dp (Data preamble) is 55h (symbol D21.2), the value of Ds (Data start) is D5h (symbol D21.6). The PCS layer always expect a strict 8-symbol preamble (includes 1x|S|, 6x|Dp| and 1x|Ds|).

LANE 0	S	Dp	D	D	 D	Α	R	K	R	R
LANE 1	Dp	Dp	D	D	 Т	А	R	K	R	R
LANE 2	Dp	Dp	D	D	 Κ	А	R	Κ	R	R
LANE 3	Dp	Ds	D	D	 Κ	А	R	Κ	R	R

The frame format in 1G mode is shown in the next table. The PCS layer is programmable (bit SP of PCS_CFG) to either expect a strict 8-byte preamble (bit SP is set to 0) or a variable size preamble (bit SP is set to 1). When configured for supporting a variable size preamble, the PCS will accept as a valid preamble any starting sequence of 1x|S|, [0..6]x|Dp|,1x|Ds|).

In the SGMII 100Mbps mode, the PCS will search for |S| and then sample incoming data every 10 cycle. In the 10M, the PCS will sample incoming data every 100 cycle.

Finally, the PCS supports 4-bit miss-alignment in the data part of the frame (|DP| to last |D|). This is enabled using the ND option of PCS_CFG. When this option is enabled, the PCS will accept 0xD5 or 0x5?-0x?D as a valid start of frame and will automatically realign the frame before sending it to the MAC layer. This is particularly useful when the SGMII interface is coming from a device that did an MII-SGMII conversion and the size of the pre-amble on the MII was not a multiple of 8 bits. This should only be useful in 10M/100M.

In addition to the requirements in these specifications, some optional enhancements are described as followed.

3.1.4.2 Local and Remote Faults

The PCS performs the following functions:

- Upon reception of at least four local fault symbols (LFS) within a 128-cycle period, the PCS enters into a local fault detect state, and exits it when 128 cycles occur without receiving any LFS. While in local fault, the transmitter sends remote fault symbols (RFS) to the link partner. MAC data is discarded.
- Upon reception of at least 4 RFS within a 128-cycle period, the PCS enters into a remote fault detect state, and exits after 128 cycles without receiving any RFS. While in remote fault, the transmitter sends idle symbols to the link partner. MAC data is discarded.
- The PCS layer can be configured to transmit RFS when the link goes down regardless of whether LFS are received.

In the unlikely situation where two faults are received, then the local faults shall take precedence.

A cycle is 4 bytes.

3.1.4.3 PCS – Messaging

The PCS supports simple in-band messaging; it is capable of transmitting or receiving up to 24 bits of information.

Upon receiving an FSIG symbol, the PCS registers the lower 24 bits and indicates that an FSIG symbol has been detected, with interrupt generation.

The PCS can transmit an FSIG message. The lower 24 bits are registered and the PCS is forced to transmit the FSIG symbol, with interrupt generation.

3.1.4.4 PCS – Balancing the Inter-Frame Gap (IFG)

From the requirement Clause 48 (that frame transmission begins on Lane 0) there is an option of two separate implementations, both supported in the FM2224, as follows:

- Guarantee minimum IFG: The MAC always inserts additional idle characters to align the start of preamble on a four byte boundary. Note that this will reduce the effective data rate for certain packet sizes separated with minimum inter-frame spacing.
- Maintain an average minimum IFG: The MAC sometimes inserts and sometimes deletes idle characters to align the Start control character. A Deficit Idle Count (DIC) represents the cumulative count of idle characters deleted or inserted, and

this count is bound to a minimum value of zero and maximum value of three. Note that this may result in inter-frame spacing observed on the transmit XGMII that is up to three octets shorter than the minimum transmitted inter-frame spacing specified in Clause 46.

3.1.5 IFG Stretch (IFGS)

{Registers Described in Table 146, Table 147, and Table 148.}

Inter-Frame Gap Stretch is a feature that affects the amount of idle characters between packets for the purpose of congestion management. Therefore it should be thought of as being above the XGMII. Since it is independent of MAC functionality, it is described in its own section, as follows:

This feature is not an IEEE compliant feature. However it is a pre-standard implementation of a feature set currently being defined within the IEEE 802.3ar congestion management task force.

3.1.5.1 Theory

It is often desirable to limit the rate that a device can send data to its link partner to a defined rate t-zhat is below the maximum rate of the link (often referred to as rate pacing). In some situations the link partner is not capable of consuming data at the maximum rate, sustained. By limiting the rate (rate pacing), one can avoid overloading the receiving device. Given that the IEEE 802.3ae specification defines a link rate of 10 Gbps, rate pacing is achieved by sending a frame at line rate, and then stretching the inter-frame gap to some extent to achieve the desired average data rate on the link over a specified period of time, allowing a 10 Gigabit link to maintain an effective rate which is lower than the clock rate.

3.1.5.2 Definition of Terms

PR	Pacing Rate: The target bandwidth of the link.
IFGS	Inter-Frame Gap Stretch: The calculated length of byte times that the transmitter places after a frame before the start of the next frame in addition to the standard preamble and IFG to achieve the pacing rate.
Length	Length of the previous frame.
IFGC	Inter-Frame Gap Constant. The traditional IFG, or the IFG when the pacing rate = line rate. $IFG = IFGS + IFGB$.
Eligible	The port is eligible if it has a frame in memory that the bridge indicates is ready for transmission.

3.1.5.3 Functionality

Datapath

The transmitter calculates the IFGS for the next frame via the equation:

IFGS[n+1] += (1/PR-1)*Length+IFGS[n]

Next Packet \geq EOP + Preamble + IFGC (strict requirement)

Next Packet \geq EOP + IFGS (soft requirement)

After a frame is transmitted, the transmitter does not begin transmitting the next frame, even if the port is eligible, until it has waited for the time it would take to transmit the IFGS worth of bytes.

Control

The pacing rate is statically controlled. (It is anticipated that the IEEE will define a standard method for dynamically controlling this feature by exchanging control messages with the downstream link partner. However, this capability has not been defined, and is beyond the scope of the feature in this generation of the FocalPoint architecture.)

Priority Pacing

10G improves latency over 1G because it takes 1/10 the time to transmit a frame. So even if a server doesn't need 10G, it may be desirable to have a 10G connection for low latency. Pacing is used to control the bandwidth to a level that the server can consume. There is a catch though: if a high priority frame follows a low priority frame, then it experiences a delay equal to the length of the low priority frame plus the IFG stretch. In the case of sustained low priority bandwidth, the high priority frame will always find itself behind a low priority frame, and will always get stuck behind the IFGS, which could completely nullify the latency advantage of going to the 10G link.

To mitigate this adverse effect, the link can be configured to run ahead of the pacing rate by a finite amount. This is unavoidable during the transmission of a packet, which must proceed at 10 Gbps. A packet should not be dropped by the downstream link partner provided that over the time interval T, $BW \le PR*T+C$, where C is a constant that represents a reserved amount of space in the downstream link partner's frame buffer. As a latency optimization, priority is taken into account in determining when to repay the accumulated IFGS.

Counter implementation

The IFGS is implemented with a counter, which operates with the following rules:

- Every time a frame is transmitted the length of the frame is added to the counter.
- Over time-interval T, 10 Gbps * PR*T is subtracted from the counter.
- The value of T is 1024 bytes. This will cause a jitter of +/- 800ns. The maximum pacing rate is 1/256th of the line rate. The precision is 0.4% of a 10 Gbps link.
- The counter may not go below zero. The counter may go as high as the max WM + Max frame size.

There are watermarks per priority. On transmission of a new frame, the counter is checked against the watermark for that frame's IEEE 802.1p priority. If the counter is below the watermark, the frame is transmitted, if the counter is above the watermark, the frame is not transmitted. After the counter is decremented, the watermark is checked again. This check is independent of the minimum inter-frame gap check that all packets must meet.

3.1.6 MAC

{Described in registers Table 149 to Table 150}

The FM2224 implements a standard 10 Gigabit Ethernet MAC and/or a standard 1G full duplex MAC (SGMII), and in addition supports some optional proprietary and/or pre-standard implementations. The supported specifications are:

- IEEE 802.3ae (10G MAC)
- IEEE 802.3z (SGMII MAC)

The MAC layer performs:

- Frame length enforcement
- · CRC checking on ingress and CRC checking and generation on Egress
- Frame padding

- MIB counters (described in the frame control section)
- VLAN tagging (described in VLAN section)
- Priority regeneration (described in congestion management)
- MAC control frame trapping and generation
- Special support for proprietary routing applications

3.1.6.1 Frame Length, Errors and Trapping

The MAC supports the following frame lengths, and has specific counters for their bins:

- Standard Ethernet frames 64 bytes to 1522 bytes
- Jumbo frames up to 10240 bytes
- Small frames A minimum frame size configuration that can be set as low as 32 bytes. However, the system must not go above the max frame rate of the FM2224.

The CRC of all incoming frames is checked. In addition on Egress, after queuing and before any tagging, the CRC is checked again, to catch soft errors. Finally, the CRC may be regenerated on Tx if a tag is added or removed. In the event of an error in cut-through mode, the CRC may be forced bad.

Padding:

- If the actual frame length is below specified minimum frame length, and the frame is not discarded, it is padded to the minimum frame length before transmission.
- If a length of a legal frame is reduced below the minimum frame length because a VLAN tag was stripped, then it is padded to the minimum frame length.

3.1.6.2 Flow Control

{Described in registers Table 151 through Table 153}

The FM2224 is fully compliant with the "Pause" specification of IEEE 802.3-2002 Clause 31 and Annex 31B, also published as IEEE 802.3x.

At the link level the following aspects of "Pause" are configurable:

- Whether the pause feature is on
- If the pause feature is off, whether the switch should discard or trap MAC control frames to the CPU
- Number of 512 bit times specified in the Tx Pause message
- Time between Pause messages sent by the Tx to the upstream link partner, when the port is "paused" by the congestion management watermarks.
- The port MAC address which is the source address in a Pause message.

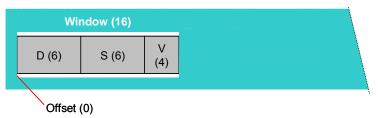
The policy for when a port is paused is described in 3.3.

3.1.6.3 Proprietary Header Support

{Described in registers Table 70 and Table 149}

This is not an IEEE compliant feature, but is generally considered useful for interconnecting XAUI-based ASICs which are not fully IEEE compliant.

The feature is illustrated in Figure 15. It has two components. There is a header offset, which allows the MAC to skip up to 255 bytes (in 4-word increments) before interpreting the next 16 bytes as the actual switching header. Secondly, there is a 128 bit mask that covers any aspect of the header that the switch should ignore (it sets the masked bits to


zero internally). Finally, any standard Ethernet feature that is undesired must be turned off.

This enables:

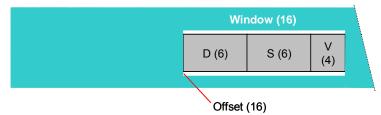
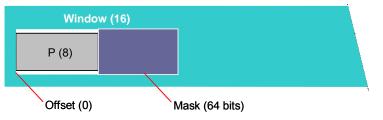

- Pre-pended header information (which the switch can ignore)
- Switching and link aggregation hashing from any field in the header

Figure 15 Proprietary Header Support


Standard Ethernet header

Proprietary header in front of Ethernet header

Switching based on proprietary header

3.2 Frame Control

3.2.1 MAC Address Security

{Described in Registers Table 62 and Table 68}

This is a common ad-hoc feature, not an IEEE compliant feature, which may be used conjunction with IEEE 802.1x

There are two MAC address security checks,

- The Source MAC address in the table
- A Source MAC address in the table is on the correct port

Unknown MAC addresses or known MAC addresses on the wrong port are considered violations when the security feature is enabled. When a frame meets the criteria to be considered a security violation the following actions are possible:

• Security checking is off

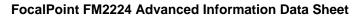
- The frame is forwarded normally
- No security violations are counted
- No interrupts are raised
- Security is on
 - The frame is discarded
 - The frame is counted as a security violation
 - A maskable interrupt is raised
 - The frame may be trapped to the CPU

3.2.2 IEEE 802.1x – Port Access Control

The FM2224 is fully compliant with IEEE 802.1x, "Port Access Control."

3.2.2.1 Supported Modes

- Single host mode: Software enables MAC security, turns aging/learning off, and statically enters the authenticated supplicant MAC address into the table. Software responds to a security violation.
- Multi-host mode: Software does not enable MAC security, and then any number of MAC address may be learned on the authorized port.
- VLAN Security (guest VLANs): The authentication state of the port in SW is deauthorized, but the physical port is put into the forwarding state, and given a default VLAN. All packets are tagged with this VLAN, all packets that were tagged upstream are discarded. EAPOL messages are trapped. Once the authentication server authorizes the port, it assigns the port a different default VLAN with greater resource access.


3.2.3 VLAN

{Described in registers Table 63, Table 68, and Table 69}

3.2.3.1 Tag-based VLANs

The FM2224 is fully compliant with the IEEE 802.1Q-2004 revision of the VLAN specification. In addition, it supports the following,

- Each port has a default VLAN ID and default priority
- Per port VLAN association and tagging, ingress rule is one of the following:
 - Untagged packets received on a port will be associated with the default VLAN ID and priority configured for that port.
 - For tagged packets, each port may be configured in the following modes:
 - The VLAN ID and VLAN priority defined in the packet are used as is
 - The VLAN ID and VLAN priority defined in the packet are overwritten with the default VLAN ID and default priority of the port on which the packet is received
 - The VLAN ID and VLAN priority is ignored and the packet is considered untagged. The method 3 is useful for support of Q-in-Q (or double tagging).
- Per port VLAN ingress policy, which ca be set to any of the following:
 - Discard all untagged packets
 - Discard all tagged packets

- Discard ingress boundary violation if the ingress port was not part of the member list of that VLAN ID
- Discard egress boundary violation if the egress port was not part of the member list of that VLAN ID for a statically configured address. (filtering the port set to the VLAN membership list in a flood is not considered an egress BV).

The FM2224 supports all 4096 VLANs in a central table that includes the following fields:

- Membership list: If the destination is not part of the VLAN it will not be forwarded to that port.
- Egress tag/untagged: If this bit is set, the frame will always leave with the VLAN tag of the associated VLAN.
- Spanning tree state
 - Per VLAN per port spanning tree state enables independent VLAN learning (IVL Bridge).
- VLAN counters
 - Up to 32 VLANs may be configured for statistics.
- Parity

3.2.3.2 Port Based VLAN

Port-based VLANs are an ad-hoc pre-standard implementation of VLANs which can be used instead of or in addition to the IEEE 802.1Q-2004 VLAN tagging. In particular, port-based VLANs provided Mesh architecture support.

In Port-based VLANs, the ports of the switch are separated into groups. Each group is a Virtual LAN.

The following properties apply:

- A port may be a member of any and all other member lists
 - The port configuration must be symmetric. If port A is configured to talk to port B, port B should be configured to talk to A
 - A port has only one VLAN and all frames that ingress that port are associated with it. This VLAN association is implicit; there is no tagging, and the VLAN does not survive outside the switch.
- Frames in one group are not forwarded to the ports that are not also in the group
- When a frame's destination address is not known by the switch, the frame is flooded only to the ports in its VLAN member list

3.2.3.3 VLAN Tunnels

The FM2224 supports two VLAN tunnels, an ad-hoc standard:

- VLAN multicast tunnel
- VLAN unicast tunnel

A VLAN tunnel is a means of suppressing the VLAN checking in some circumstances. Normally the VLAN membership list is "anded" with the destination mask to determine the destination port(s) of the traffic and check for boundary violations. However under some circumstances it is desirable to make the VLANs more permissive.

A VLAN multicast tunnel suppresses the membership mask check of the destination address for multicast traffic only.

The VLAN unicast tunnel suppresses the membership mask check for unicast traffic that is static (the lock bit is set in the MAC address Table). VLAN unicast tunnel is only supported in shared learning mode.

3.2.3.4 Double VLAN Tagging

Double VLAN tagging simply adds another layer of IEEE 802.1Q tag (called "outer tag") to the 802.1Q tagged packets that enter the network. The purpose is to expand the VLAN space by tagging the tagged packets, thus producing a "double-tagged" frame. The expanded VLAN space allows the service provider to provide certain services, such as Internet access on specific VLANs for specific customers, and yet still allows the service provider to provide to provide other types of services for their other customers on other VLANs.

Tahoe does support double VLAN tagging by providing the ability to the user to configure any port to systematically tag all packets received regardless if they are already VLAN tagged or not. This is enabled via SYS_PORT_CFG_1: TagAllPackets. The ethernet type used for the outer tag on the outbound packets depends on whether the packet was received tagged or untagged. If the packet was received untagged, then the new tag will be of type 8100 as define din 802.1Q. If the packet was tagged, then the new tag is defined in the MAC_CFG_1:VlanEtherType register.

3.2.4 Network topology and Spanning Tree Protocol (STP)

The FM2224 is fully compliant with IEEE 802.1D-2003, and supports:

- Spanning Tree Protocol (STP)
- Rapid Spanning Tree Protocol (RSTP)
- Multiple Spanning Tree Protocol (MSTP).

To support proprietary BPDU addresses, it is possible to use a non-reserved multicast address. The address can be configured in the MAC address table, and VLAN multicast tunnel may be used to prevent this configuration from taking multiple table entries.

FocalPoint supports two learning modes:

- SVL Bridge: Shared VLAN Learning bridge. All of the VLANs are mapped to the same Forwarding information database (FID).
- IVL Bridge: Independent VLAN Learning bridge. Each VLAN is mapped to its own FID. In this case, the VLAN is an extension of the MAC address, and the table is searched with a 60 bit key instead of a 48 bit key. Furthermore independent port state is stored in the VLAN ID table for disabled, listening, learning, and forwarding.

To enable the spanning tree algorithm, FocalPoint supports the following port states

- Disabled: The port drops all packets on Ingress and Egress.
- Listening: The port drops all packets except BPDUs
- Learning: The port drops all packets exept BPDUs and on Ingress, the port learns addresses
- Forwarding: The port forwards all packets normally.

FocalPoint stores this state in the VLAN table. There are 4094 vectors of per-port spanning tree state. In independent learning mode, all port state is independent. In shared learning mode, the port state with VLAN ID 0 is used for all VLANs on all ports.

3.2.5 Multicast and Protocol Traps

{Described in registers Table 62, Table 64, Table 65, and Table 66}

3.2.5.1 MAC Address traps

The reserved group addresses supported by FocalPoint are:

The switch has the ability to trap frames of some special multicast addresses. Each trap is separately enabled. The traps are:

- BDPU Spanning Tree : 0x0180C2000000
- LACP Link Aggregation Control Protocol: 0x0180C2000002
- Port Authentication: 0x0180C2000003
- GARP Both GMRP and GVRP: 0x0180C2000020-1
- IGMP v3: 0x01005E000001
- All other IEEE: 0x0180C20000xy: where x=0 & y > 3, x=1, or x=2 & y > 1.
- Note: Broadcast is also sent to the CPU, however it is not a trap.

When a frame is trapped, it is sent to the CPU instead of being treated as a general multicast address. The hardware uses a special internal priority for this transfer, and that prevents the frames from being dropped for WRED calculations, except in the case where the entire memory would fill up.

3.2.5.2 CPU MAC Address

In parallel with the MAC address lookup and the protocol multicast address traps, there is a programmable register on which a lookup is performed every cycle. If the destination address matches this register then the frame is sent to the CPU port irrespective of VLAN. However, source address lookups for security and triggers still apply. Ingress rules apply to the frame, but Egress rules do not.

3.2.5.3 Ether-type trap

There is also a configurable Ether-type trap. Any frame that matches the Ether-type will be trapped, and not forwarded normally.

3.2.5.4 IGMPv3 Snooping

IGMPv3 is supported. The extent of this support is to trap the multicast address 0x01005E000001.

3.2.5.5 Multicast groups

Any entry in the MAC address table may be a multicast group. Therefore, there may be up to 16k multicast entries. Flooding may be used to forward any multicast group for which there is no entry configured in the MAC address table.

3.2.6 MAC Address Table and VLAN Table

{Described in registers Table 77, Table 82, and Table 83}

FocalPoint supports a 16k-entry MAC address table. Any of the 16k entries may be a unicast or a multicast address. The table is an 8-way set-associative hash table.

The table has the following fields:

- MAC Address
- FID: Learning group; for multiple spanning trees this is equal to the VLAN-ID, for shared spanning trees it is equal to zero.
- Valid: Entry is valid
- Lock: Manager has specified this address and switch may not age it out.
- Age: Age time stamp
- Parity
- TRIG-ID: User defined triggers
- Destination Mask: Bit mask for ports associated with this address. One-hot encoding for unicast traffic.

The hash function supports address aliasing resolution. The 32-bit CRC hash function reduces the 60 bit MAC address +VLAN ID to a 16 bit number. Only 12 bits of this are used as the address to the look-up. The FM2224 allows any three of four groups of bits to be selected as the input to the hash function. Performance analysis indicates there is a very low probability of address aliasing (when multiple distinct MAC addresses +VLANs point to the same address) of greater than 8 bins for normal MAC address populations. However, if an address occurrence happens, and there is an unacceptable level of flooding, then the hash input may be changed and the table repopulated to resolve the corner case.

3.2.7 Lookups and Forwarding

3.2.7.1 Source Address Check

The source address is searched for two reasons:

- Discard and redirection rules
- Security
- Triggers: Can be programmed on source address
- Learning

If all of the features that require a source address check are turned off, then the check may be disabled to save power. Furthermore, the device provides a configurable overprovisioned mode in which the source address search is done on a best-effort basis.

3.2.7.2 Destination Address

The destination address and VLAN is searched for the following:

- Filtering information (multicast reduced to unicast)
- Traps: Special multicast addresses

User-defined triggers

3.2.7.3 VLAN ID

The VLAN ID is searched for the following:

- Ingress and Egress member-list
- Tag processing
- Spanning tree state
- User-defined triggers
- VLAN statistics

3.2.8 Forwarding

{Described in registers Table 62}

Forwarding relay rules are fully compliant with IEEE 802.1Q-2004 (see clause 7 for details).

Flooding

When the lookup returns an unknown destination address, the frame is "flooded." A flood is a normal forwarding that goes out of all switch ports (subject to VLAN membership).

- Either a unicast address or a multicast address that is not in the table is flooded
- When a frame is flooded it is never sent to the CPU port

Flooding policy on a DLF is configurable

- Flood both unicast and multicast
- Do not flood unicast (discard), flood multicast
- Do not flood unicast (discard), do not flood multicast (discard)

3.2.9 Discard and Monitoring: User-Defined Triggers

{Described in registers Table 90 through Table 93}

In addition to the trapping, discarding, and forwarding rules described above that implement various IEEE protocols, FocalPoint also contains a general set of rules for trapping, redirecting, and discarding traffic. These rules are user programmable and are referred to as "triggers."

A trigger is a programmable Boolean expression. If all of the conditions defined in the expression are true, then the trigger "fires" and one of a programmable set of actions is taken other than the normal forwarding of the packet.

The trigger programmable conditions are as follows:

- One MAC
 - The MAC address trigger field in the MAC address table indicates this trigger number
 - If either the source address or the destination address matches, then fire the rule. This is useful for monitoring all of the traffic between one MAC address and the rest of the network.
- Both MAC lookup miss

- Both MAC lookup match
 - The trigger field in the MAC address table indicates this trigger number
- Destination MAC address lookup match
- · Destination MAC address lookup miss
- Source MAC address lookup match
- Source MAC address lookup miss
- Source Port
 - Configured in trigger source port register
- Destination Port
 - Configured in trigger destination port register
- VLAN
 - The trigger field in the VLAN ID table indicates this trigger number
- Unicast
- Broadcast
- Multicast
- Priority
 - Configured in trigger priority register

The trigger actions are as follows:

- Forward normally but count frames that triggered
- Redirect
 - Do not forward to the MAC address table-configured destination, and instead forward to a specified port (monitoring or CPU).
- Mirror
 - Forward both to the port indicated in the MAC address table and forward an additional copy of the frame to a specified port.
- Discard

Whenever a trigger fires, the count associated with that trigger is incremented. For more information see Section 3.4.

There are 16 separate programmable triggers. Each trigger has identical capabilities. There are 5 bits for triggers in the MAC address table and VLAN ID Table, allowing for future expansion to 32 triggers.

Limits and Special Conditions

While triggers are very general, as a result of filtering rule precedence, there is a fundamental limit to their use. That is, a frame that has been discarded as a result of the spanning tree state, an IEEE reserved trap, a MAC security violation, or an ingress VLAN filtering rule, is not subject to triggers. Furthermore, if a frame is redirected as a result of the triggers, it is still subject to congestion management, and may not reach its ultimate destination. Triggers have a higher precedence than DLF drops.

The redirection and / or monitoring port is a physical port, not a logical port. This is done so that link-aggregation and triggers may be processed in parallel.

3.2.10 Link-Aggregation

{Described in registers Table 84 through Table 89}

The FM2224 is fully compliant with the link aggregation spec with IEEE 802.3ad-2000, conversely IEEE 802.3-2002 clause 43.

The FM2224 implements all necessary functionality in hardware for high performance link aggregation. However, it does require a control processor to implement the control protocols. LACP and Marker protocols are trapped to the CPU for processing in software.

There can be up to 12 ports in a trunk group. There are up to 12 trunk groups in the FM2224. No port may be in multiple trunk groups. These rules are not enforced in the hardware, it is up to software to follow them.

A hash distribution function is used to index the physical port in the trunk group. The input into the hash function is configurable to include any of the following

- Destination address
- Source address
- Type (If type > 0x600, otherwise this input is zero)
- VLAN-ID
- VLAN-Priority
- Source port the physical port on which the frame ingressed

The modulus, of the number of ports in the trunk group, is taken of the result of the hash function, yielding the index to the physical port within the trunk group. There is an additional renumbering step to create an arbitrary mapping between the resolved port of the link aggregate group and the actual physical output port, greatly easing the constraints of circuit board layout.

3.2.10.1 Federated Switch Architecture with Link Aggregation

The link aggregation features in conjunction with software support provided in the FM2224 driver enables federated switch architectures with standard Ethernet features.

A federated switch is comprised of "line" switches and "fabric" switches as shown in Figure 16. In a CBB (constant bi-sectional bandwidth) federated switch architecture (aka "Fat Tree"), the bandwidth and port count between the network and the line switch (green links) is the same as the bandwidth between the line switch and the fabric switch (orange links). There are always twice as many line switches as fabric switches.

A maximal configuration 2-tier fat tree has 288 network facing ports and consists of 24 line switches and 12 fabric switches. Each line switch has 12 of its ports facing the network and 12 ports connected to the fabric switches, one port per fabric switch. Sub-maximal configurations are possible, such as a 144-port system with 12 line and 6 fabric switches. In that case, each line switch still has 12 network facing ports, but has 2 ports connected to each of the 6 fabric switches.

The link aggregation hardware features are used to distribute conversations from each line chip across the fabric chips.

- The line chip treats all the fabric chips as being in the same link aggregation group. When an address is not known, it is flooded to only one of the fabric chips, as determined by the hash distribution function.
- The fabric chips view each line chip as being separate (not in the same link aggregation group). When an address is not known, the fabric chip floods the frame to all of the ports except the port that the frame came in on.

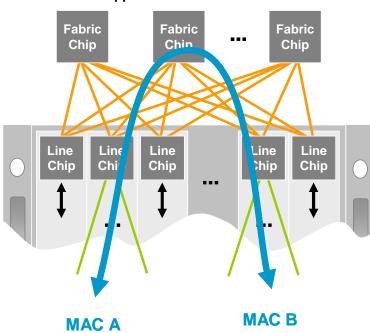


Figure 16 Federated Switch Support

The link-aggregation hash function may be configured to produce a symmetrical result for both directions of traffic flow in a conversation. In a conversation between two MAC addresses, MAC A and MAC B, the source/destination symmetry function will guarantee that frames from A to B and frames from B to A travel the same path through a multi-hop system. This feature enables the use of learning and aging to maintain the table information in a federated switch architecture.

3.2.11 Table modification

{Described in registers Table 67 and Table 68}

Table entries are dynamic or static.

3.2.11.1 Learning and Aging

Each port is independently configurable for learning. If learning is off, then the only way to add MAC entries to the table is through management. If learning is on the switch will add entries to the table after performing a source address lookup.

Aging is a global MAC address table configuration controlled by the SYS_CFG_7 register (see Table 67). If the MAC address is dynamic (the lock bit is not set) then entries may be aged out of the table. The configurable times to age the entire table are limited to:

- 32,000 CPU clock periods < Age Time < 6.87×10^{13} CPU clock periods
- Don't age

When a learning or an aging event occurs, the change in the MAC address Table is made available to the CPU and a maskable interrupt is raised. There is a 64-deep queue of MAC address change information. If a burst of learning events happens more quickly than the CPU can service the interrupts, then this FIFO will overflow. In which case, the software image of the table may be resynchronized by reading the hardware table.

If the FM2224 is operated above its guaranteed maximum fully provisioned frame rate, but below its "best effort" maximum frame rate, then the source address look-up rate may be reduced through the best-effort look-up feature. The best effort look-up feature reduces the source address look-up rate when the frame rate is sufficiently high that the look-up would otherwise begin to drop frames. In this rare case, learning becomes statistical.

3.2.11.2 Static Configuration

The switch does not modify static entries in the MAC Table.

The manager may make an entry static, by setting the lock bit.

3.2.11.3 Table Access Atomicity

Accesses to the MAC address table's 12 byte (3 word) MAC addresses are atomic. A cache atomically refills a new entry when the lowest order word of a table entry is read. And when the top word in the cache is written, then the whole line is atomically written to the table.

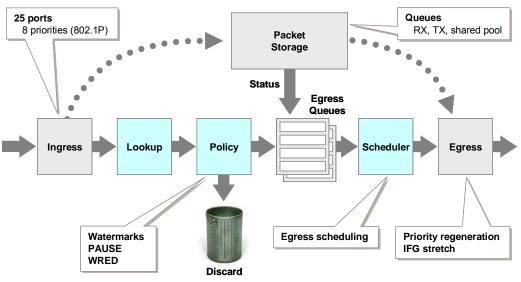
3.2.12 Memory Integrity

{Described in registers Table 51 through Table 53}

The FM2224 tables are protected with parity. There are different policies for parity errors depending on the severity of the outcome. No parity errors are correctable in the hardware. The following is a summary of the checking of parity errors and the actions on discovery of a parity error:

- Frame memory
 - Parity is checked indirectly by checking the RX and TX CRCs. The switch generates an error if the RX CRC is good but the TX CRC is bad. The parity error is counted. This parity error cannot lead to an illegal state.
 - If the switch memory generates a parity error, the frame is transmitted with a forced bad CRC whether the frame was cut-through or s-n-f.
- Scheduler Memory
 - · Parity errors are explicitly checked in the scheduler.
 - Some scheduler parity errors are fatal and the chip should be reset immediately. Others cause a memory leak which may not be necessary to fix immediately.
- MAC address table
 - Parity is explicitly checked in the MAC address Table.
 - If a parity error is discovered, that MAC address line is treated as invalid, as if the valid bit were set to zero.
 - If the entry had been learned, then the error is self-correcting as the entry will simply be relearned.
 - However if the entry were statically configured, it must be rewritten by software.
 - A parity error interrupt is raised.
- VID/FID table
 - Parity is explicitly checked in the VID/FID table.
 - If a parity error is discovered the VID and FID entry for that VID TAG is treated as invalid. This means that all frames on that VLAN are discarded until the entry is rewritten by software.

Fulcrum Confidential

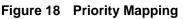


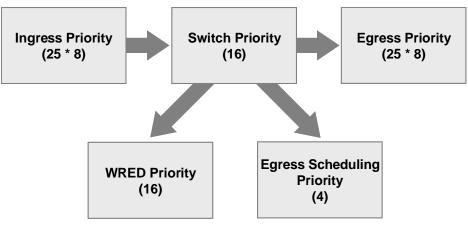
• A parity error interrupt is raised.

3.3 Congestion Management

The FM2224 supports a rich set of congestion management features. Figure 17 illustrates the flow frame data and control through the FM2224.

Figure 17 Congestion management architecture


3.3.1 Priority Mapping


{Described in registers Table 94 through Table 97, Table 155, and Table 156 }

Priority is used to separate traffic into different ordering domains, with differentiated service for each ordering domain. There are 5 types of priority classes in FocalPoint: Ingress (25*8=200), Switch (16), Egress (25*8=200), WRED (16) and Egress Scheduling (4), related through mapping functions. Ingress priority is the 3 bit VLAN priority tag that appears on all tagged frames. The Egress Priority has no effect on the switch, it is simply the tag presented to the outside network on each frame.

In addition, user defined triggers, see section 3.2.9, can establish a switch priority based on any trigger rule. This is helpful for applications in which using VLAN priority tagging is not the preferred way of establishing priority.

3.3.1.1 Priority Regeneration

The FM2224 supports priority regeneration where the ingress priorities map to different egress priorities. Up to 8 priorities can be remapped without having any effect on the other WRED or egress scheduling priorities. To remap a priority, the Ingress VLAN priority is mapped to a switch priority 8-15 and that priority is configured with the desired egress priority. The mapping to WRED and egress scheduling must still be configured as they were in switch priorities 0-7.

3.3.2 Shared Memory Queues

{Described in registers Table 99 through Table 105, Table 108 and Table 109}

The FM2224's shared memory architecture allows the construction of queues of variable sizes. A memory segment in FocalPoint has an "association" with multiple queue resources. This association is used to track queue status on which WRED and Pause are based.

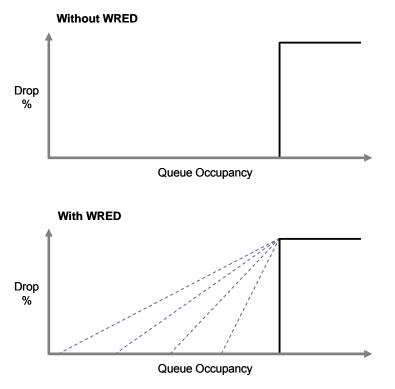
There are three types of status or "segment association" reported by the switch element. They are RX port, TX port, and shared pool.

- A segment maintains its RX and global association from when the memory is initially allocated to when it is freed after transmission.
- The TX port association is established once the forwarding information for that frame is determined, and it is freed after transmission. In multicast, it is freed after transmission to the last port.
- The shared pool status specifies how full the memory is that is shared between the different ports. The total available shared pool is defined as the total memory minus the sum of each ports private memory.

FocalPoint supports the following watermarks,

- RX-Private (per port, both Pause and WRED)
 - Frames from the ith RX port may use ith RX-Private queue.
 - The sum of the RX_i-Private total memory (1MB).
 - RX-Private is the same for both Pause and WRED
- RX-Shared and TX-Shared watermarks for Pause and WRED
 - Shared watermarks are "Hog watermarks" and once the occupancy exceeds the watermarks, either the ports are paused or the frames are dropped with 100% probability.

- While an RX queue occupancy is between RX-Private and RX-Shared, the switch may pause the RX port or drop frames for WRED.
- The user must set RX_i-Shared > RX_i-Private.
- Global WRED watermarks
 - Low The lower WRED watermark, see section 3.3.3
 - High The upper WRED watermark, see section 3.3.3.
- Global Privileged watermark
 - Prevents MAC overflow


3.3.2.1 Queue configuration

For all of the watermarks, the queue size is an integral number of 1024 bytes. The size 1024 bytes is a convenience of the WRED and Pause processing, and does not reflect the segment size of the memory.

3.3.3 WRED

The FM2224 uses WRED (Weighted Random Early Detect) to protect queue resources preferentially for higher priority tagged frames. Figure 19 shows a queue without WRED and a queue with the FM2224's implementation of WRED. The dotted lines of different slope represent different WRED priorities. Note that all lines have the same 100% drop intercept. This makes the WRED implementation a superset of the simple queue.

Figure 19 WRED Implementation

3.3.3.1 Tail drop versus WRED

In the FM2224, There are five rules for discarding frames for congestion management:

- The Rx shared watermark for discard is exceeded: $rx_i > RxSD_i \rightarrow 100\%$ packet drop, unless the switch priority is protected. [WRED is not used in this case, it is 100% drop]
- The Tx shared watermark for discard is exceeded: $tx_i > TxSD_i \rightarrow 100\%$ packet drop, unless the switch priority is protected. [WRED is not used in this case, it is 100% drop]
- The global-WRED-low discard watermark is exceeded and for this switch priority and traffic type, it is configured to check against the low watermark; $sum(y_i) > GLD$ (Global Low Discard). WRED is applied to GLD.
- The global-WRED-high discard watermark is exceeded and for this switch priority and traffic type, it is configured to check against the high watermark; $sum(y_i) > GHD$ (Global High Discard). WRED is applied to GHD. GHD should be greater than GLD.
- The Global Privilege watermark is exceeded: g > GPD (Global Privilege Discard)
 → 100% packet drop. This is set to the highest watermark. In this case, g is taken as the total memory used. Not the just the memory in the shared pool.

3.3.3.2 WRED Calculation

The algorithm for WRED is

- Compute a drop probability based on queue occupancy and priority
 - The priority is the internal switch priority as determined by RX_PRI_MAP.
 - The queue occupancy is the actual occupancy in KB of the shared memory and excludes the private per-port queue.
 - The drop probability is computed for 0.. 1023.
- Generate a random number between 0 and 1023 with a 30-bit LFSR.
- If the random number is less than the drop probability computed, discard the frame, otherwise forward the frame.
 - In FocalPoint there is only one WRED calculations per packet, even though there are multiple watermark checks.

The equations to specify the drop probability, h(x) are:

Equation 1

$$\begin{cases} 0 \\ \max\left(1024 - (WM - x)2^{S\{3:1\}} * 3^{S\{0\}}, 0\right) \\ x \le WM \end{cases} x < WM - \frac{1024}{2^{S\{3:1\}} * 3^{S\{0\}}} \\ x \le WM \end{cases}$$

Where:

- WM Watermark: either GLD or GHD Occupancy level at which the dropping should be 100%
- x status value for the queue
- s WRED slope configuration 4 bit quantity.

3.3.4 Pause Flow Control

The FM2224 is fully compliant with IEEE 802.3x, and IEEE 802.3-2002 clause 31 and Annex 31a and Annex 31b.

FocalPoint will signal pause-on for two reasons. Either a single port has exceeded its max allotment of the shared resource (Hog), or the global memory is too full and the port has exceeded its private memory allotment. This is defined with the following equations:

Equation 2

$$y_{i}: \max(rx_{i} - RxPv_{i}, 0)$$

$$\left(rx_{i} > RxsP_{i}^{h} \mid \left(y_{i} > 0 \& \sum_{i} y_{i} > GP^{h}\right)\right) \& pause_{i} == 0 \rightarrow pause_{i} = 1$$

$$\left(rx_{i} < RxsP_{i}^{l} \& \left(y_{i} == 0 \mid \sum_{i} y_{i} < GP^{l}\right)\right) \& pause_{i} == 1 \rightarrow pause_{i} = 0$$

The global watermark default (see Table 108) is 0x144, corresponding to 324 kB, or about 13.8 kB per port. Private watermark default (see Table 100) is 16.4 kB per port. The condition for signaling pause-on where a port exceeds its private watermark while the global watermark is also exceeded is:

1024kB (total memory) – [13kB (global WM) x 24 ports] – [16kB (default RxPvi) x 24]

which leaves 300 kB unused in the switch, or about 12.5kB/port. For lossless flow control, 2 packets of 2kB each must be stored, leaving over 8kB per port of "wire delay" or "bytes in flight" that can be stored.

Where the following are defined as:

- pause_i The pause state of the ith port.
- rx_i Number of active 1024 byte segments associated with the Rx of port i.
- RxsP_i^h Rx shared pause-on watermark for the ith port.
- RxsP_i¹ Rx shared pause-off watermark for the ith port.
- GP^h Global Pause-on watermark.
- GP¹ Global Pause-off watermark.
- RxPv_i Rx private watermark for the ith port.

The rate of signaling pause messages is independent of the status crossing the pause on/off watermarks, and separately configured.

FocalPoint supports the following Pause features:

- Pause on/off based on Equation 2.
- Configurable Pause timer
- Configurable Pause watermarks, including configurable hysteresis between on and off.
- Asymmetric Pause
 - Rx may respond to Pause while TX never transmits pause messages.
 - Rx may be configured to ignore Pause while TX produces pause messages.
 - Both Rx and Tx may be configured to ignore pause and not transmit pause
 - Both Rx and Tx may be configured to respect pause and transmit pause as specified in IEEE 802.3x

Turning the Pause feature off is accomplished by setting the watermarks for Pause to a level which is higher than the device can attain.

3.3.5 Egress Scheduling

{Described in registers Table 106 and Table 107}

Egress scheduling is the rules applied to determine which frames are to be transmitted next on the port from the Egress Scheduling Priority Queues (ESPQ). The priority used to determine the scheduling is the Egress Scheduling Priority, which is defined in section 3.3.1. Egress scheduling is an independent function on each output port. In FocalPoint, Egress Scheduling is based on the number of frames transmitted, not on bytes transmitted or number of segments transmitted.

There are two scheduling modes,

- Strict Priority Always schedule the frame of the highest priority queue that is ready to transmit
- "Priority Weighted Round Robin" Service the priority queues in round-robin fashion, scheduling a weighted number of frames per turn per queue. The order in which frames between queues are scheduled, up to the ESPQs' weights, is configurable
 - In priority order, using credit only as the ESPQ is serviced.
 - Pure round robin: schedule the number of frames equal to the weight or until the queue is empty then proceed to the next queue.

Each priority queue can be in either scheduling mode. That is, some queues could be strict priority while other queues are WRR. This is implemented internally with the following constructs:

Eligibility

- An ESPQ is said to be eligible if and only if at least one frame within the queue is ready to be transmitted.
 - In store-n-forward mode this means the whole frame is in the ESPQ.
 - In cut-through mode, this means the head sub-segment is in the ESPQ.

Initial Credit

• The initial credit is the weight given to the ESPQ. It is the number of frames the queue may schedule per turn.

Credit Decrementing

- A strict priority ESPQ never loses credit
- A WRR ESPQ loses credit depending on the service algorithm
 - In priority Order (PO), the ESPQ loses one credit per frame transmitted
 - In Pure Round Robin (PRR), the ESPQ loses one credit per frame transmitted, and all remaining credits once it is not eligible.

Credit Adding

- In strict priority there is no need to ever add credits
- In WRR credits are added depending on the service algorithm
 - PO The ESPQ gains its weight of credits once there are no credits left for all eligible ESPQs
 - PRR All ESPQs are reset to their weight once there are no more credits in any ESPQ

Weights, Queues and Configuration

- There are 4 ESPQs per port
- Each ESPQ has a 8 bit weight, giving a range of 1-255. The value 0 is illegal.

Fulcrum Confidential

- The default is strict priority
- Each ESPQ has a configuration between strict and WRR
- For all the WRR ports, the global service algorithm is configurable between RO and PRR.

3.3.5.1 Jitter buffers

{Described in register Table 112}

The FM2224 has jitter buffers on either side of the switch element datapath (SED) to prevent RX overflow and TX underflow.

Size and Configuration

- RX jitter buffer
 - 256 bytes
 - No configuration
- TX jitter buffer
 - 256 bytes
 - Cut-through Watermark configurable from 8 to 256 bytes in word increments
 - Store-n-Forward Watermark configurable from 8 to 256 bytes in word increments
- Latency
 - The RX jitter buffer adds 50 ns latency (one 4-byte subsegment) to packet transmission regardless of size.
 - The TX jitter buffer adds no more latency than its size / data-rate as configured by the watermarks.
 - However, the last 64-byte segment of a packet is scheduled irrespective of the occupancy assuming the occupancy is greater than 8 bytes. A 64 byte frame is therefore transmitted without an occupancy-watermark check.

3.4 Statistics

{Described in registers Table 113 through Table 128}

The FM2224 keeps packet statistics compliant with IETF RFC 2819, and additional statistics for proprietary features. The general principle is "any time a switch takes action on a frame, count the action.

Statistics are divided into groups. Only one counter within a group is exercised on any given frame. See section 5.7 for a complete list of the counters. The groups are:

- RMON RX frames by type
- RMON RX frames by size
- RMON RX octets
- RMON RX frame by priority
- RMON RX octets by priority
- RX forwarding action
- RMON TX frames by type
- RMON TX frames by size

- RMON TX octets
- Switch frame drops by Congestion Management
- Switch frame forwarded by VLAN
- Switch bytes forwarded by VLAN
- Switch Triggers

All counters in FocalPoint are 64 bits. There is no event rate requirement for reading the statistics for even the byte counters on the order of the lifetime of the chip. The counters are read 32 bits at a time. Bandwidth over the CPU interface may be saved by reading only the lower 32 bits of the counters.

There are other counters in the chip for debug purposes in both the EPL and the MAC table status. See their respective sections for a description of their debug counters.

Counters may be reset to 0 by executing a write access into the counter. The 64-bit counters are reset to 0 regardless of which 32-bit word (high or low) is written and the value written is a don't care.

3.5 Management

The chip management block includes the following components:

- BOOT FSM (Master/Slave)
- LCI (Slave)
- SPI (Master)
- CPU Interface (Master)
- JTAG (Master)
- LED (Master)
- JTAG2MGMT (Master)
- SWITCH MGMT (Slave)
- PORT MGMT (Slave)

Figure 20 shows the management infrastructure.

JTAG ł Fusebox LCI Auto Boot-LEDs Boot FSM LED Contro JTAG2MgmtMgmt2JTAG Scan Internal Bus SPI Switch Port SPI LCI EEPROM Mgmt Mgmt Port #1 Port #2 Switch Fabric . . Port #24

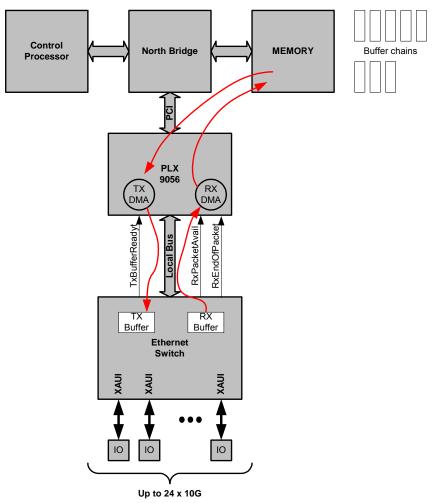
Figure 20 FocalPoint Management Infrastructure

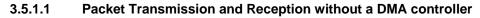
A master component is a component capable of issuing commands (read or write) on the management bus, a slave component is a component capable to receive such commands and execute but is not capable to generate one.

The components are defined here and detailed in the next sections:

CPU Interface:	The interface used by a local CPU to manage the device.
JTAG:	The interface used to access the boundary scan chain or the internal scan chains (diagnostic or RAM repair).
JTAG2MGMT:	A bridge from JTAG to the internal bus. The bridge allows an external device connected to the JTAG interface to access the internal management bus and thus any slave device on that bus.
MGMT2JTAG:	A bridge from the internal bus to JTAG. The bridge allows a bus master (CPU Interface, BOOT FSM, or EEPROM) to access internal scan chains.
LCI:	Logical CPU Interface. The port used to send or receive packets from the switch.
SPI:	Serial Port Interface. An interface to an external serial EEPROM.
FUSEBOX:	Contains information about the part (version, number of ports, package, RAM repair).
BOOT FSM:	The bootstrap finite state machine. This is activated once at startup to setup internal registers, repair internal RAM and initialize memory.
SWITCH MGMT:	Interface to manage the switch, this include setting up any frame control registers, access to global statistics and accessing the lookup table.

PORT MGMT:	Interface to manage the port.
LED CTRL:	A block that retrieves the status of the port and present it to a serial LED interface.


3.5.1 Logical CPU Interface


{Described in registers Table 75, Table 76, and Table 71 through Table 74}

The FM2224 supports packet transmission to any port of the switch and reception from any port of the switch to the local CPU controller through the CPU Interface. However, this interface is a slave only bus interface. There is no built in DMA controller to retrieve packets from memory for transmission or forward packets received to internal memory. Packet transmission and reception requires the CPU Interface master to write or read each word of a packet transmitted or received.

The FM2224 provides DMA signals allowing the usage of an external dual-channel DMA controller to do the data transfer for the CPU. This is shown in Figure 21.

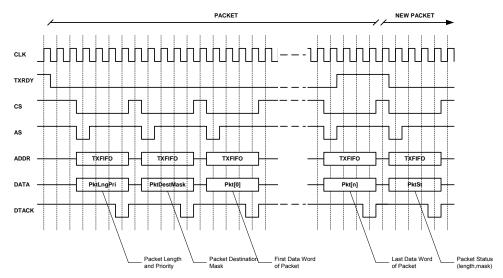
Figure 21 Example of FocalPoint with a PCI DMA Controller

In absence of DMA controller, the data transfer protocol is the following:

Packet transmission

- Check that the transmitter is ready by reading the TXRDY bit of the LCI_STATUS register. If not ready, either poll this bit until the transmitter is ready or enable an interrupt to wait for this status.
- Write the packet length word into the LCI_TX_FIFO register as described in Table 74.
- Write the destination mask into the LCI_TX_FIFO register as described in Table 11.
- Write frame payload words into the LCI_TX_FIFO register. The last word shall be padded by the host if the frame length is not a multiple of 4 bytes.

3.5.1.2 Packet reception


- Check that the receiver has data by polling the RXRDY bit of the LCI_STATUS register
 - The CPU can enable an interrupt to wait for data.
- Read LCI_RXFIFO.
 - There are three ways to indicate packet completion.
 - The CPU can enable an interrupt to inform it that a packet has finished being sent to it.
 - Read the EOT bit in the LCI_STATUS register every time that LCI_RXFIFO is read. The EOT bit indicates end of transmission.
 - Observe the EOT pin on the CPU interface.
 - The second to the last word is the end of the packet data, and it is padded to 32 bits.
 - The last word does not contain any packet data. It is an in-band status word. Its definition is contained in the table RX_FRAME_STATUS.

3.5.1.3 Packet transmission and reception with a DMA controller

Packet transmission with an external DMA controller is shown in Figure 22. The external TXRDY signal replicates the TXRDY bit of the LCI_STATUS register and is asserted whenever FocalPoint can accept a packet word from the CPU. The DMA controller may transfer data words as long as this signal is asserted.

Figure 22 Frame Transmission

Packet reception with an external DMA controller is shown in Figure 23. The RXREQ signal replicates the RXRDY bit of the LCI_STATUS register and is asserted whenever FocalPoint has a data word available to the CPU. The DMA controller can read data words from packet as long as the signal is asserted. The RXEOT signal is automatically asserted when the last word of a packet is being read (this last word contains the packet length, the source port and the CRC status). The EOT signal allows a DMA controller that has buffer chaining capability to automatically close the current buffer and move to the next one for the next packet without CPU intervention.

FocalPoint has the option to pad the frames to either a 32 bit boundary or a 64-bit boundary. The last 32 bits always contains the status work.

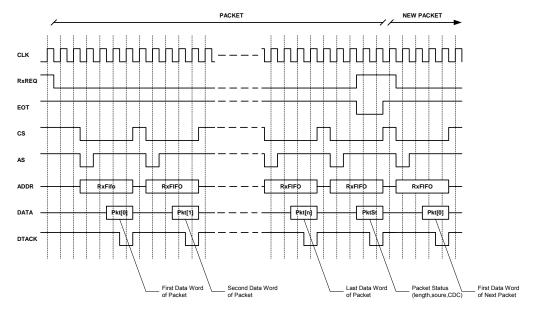


Figure 23 Frame Reception

Implementation notes: It is important that RXREQ is de-asserted at the beginning of the read cycle when there are no more frames in the queue as shown in the figure. This will give enough heads up to the DMA to not start another transfer immediately. The

Fulcrum Confidential

recommend behavior is to de-assert RXREQ only at the end of the frame and at the same time as EOT is asserted and data is driven.

3.5.1.4 Little and Big Endian Support

The endianness only affects the position of the bytes within one word. In a big endian processor, the successive bytes of a packet must be stored starting by placing the first byte in the most significant byte location of the memory and moving right. In a little endian processor, the successive bytes of a packet must be store starting by placing the first byte in the least significant byte location and moving left. In the case of 32 bit quantities, there is no difference between big and little Endian for 32-bit busses. Thus the 3 in-band control words are the same for both little and big Endian. This is illustrated in Table 4 through Table 7.

Table 4 Packet Transmission on CPU Port in Little Endian

	31 MSb		24	23		16	15		8	7		0 LSb
First word	LCI_TX	CI_TX_LEN										
Second word	LCI_TX	_CI_TX_DMASK										
Payload	frame[3	3]		frame[2]		frame	e[1]		frame	e[0]	
Payload	Х			X X frame[L				e[Len	gth-1]			

Table 5 Packet Transmission on CPU Port in Big Endian

	31 MSb		24	23		16	15		8	7		0 LSb	
First word	LCI_TX	CI_TX_LEN											
Second word	LCI_TX	LCI_TX_DMASK											
Payload	frame[0	frame[0]		frame[1]			fram	frame[2]			frame[3]		
Payload	frame[L 1]	_en	gth-	Х			х			Х			

Table 6 Packet Reception on CPU port in Little Endian

	31 MSb		24	23		16	15		8	7		0 LSb
First Status Word	LCI_R	LCI_RX_EXTRA_INFO										
Payload	frame[3]			frame[2]			frame[1]			frame[0]		
Payload	Х	X X X frame[Length-1]							th-1]			
Second Status Word	LCI_R	LCI_RX_FRAME_STATUS										

Table 7 Packet Reception on CPU Port in Big Endian

3	<1 I	24	23		16	1 5		8	7		0
---	------	----	----	--	----	--------	--	---	---	--	---

	MSb												LSb
First Status Word	LCI_R	CI_RX_EXTRA_INFO											
Payload	frame[0	D]		frame[1]		fr	ame[2]]	fra	me	e[3]	
Payload	frame[l 1]	_eng	th-	Х			Х			Х			
Status Word	LCI_R	LCI_RX_FRAME_STATUS											

3.5.1.5 In-band control word definitions

LCI_RX_FRAME_STATUS is appended to the end of a data transmission. Thus the amount of memory taken up in the receive buffer in the host CPU is the packet length + 4 bytes. LCI_TX_DMASK and LCI_TX_LEN are control words inserted in-band on data transmission. Note that even if the CPU forwarding mode is "forward normally" The control word LCI_TX_DMASK is still assumed to be the second word. In this case it is just ignored.

Table 8 LCI_RX_EXTRA_INFO

Name	Bit	Description	Туре	Default
SrcPort	23:18	Indicates on which port the switch received this frame.		
VLAN Action	17:16	Indicates how the VLAN ID shall be interpreted.		
		0: Do nothing, the VLAN ID indicated in this register is the same as the VLAN ID in the frame.		
		1: The VLAN ID indicated in this register is the new VLAN association for this frame and the VLAN tag present in this frame shall be removed.		
		2: The VLAN ID indicated in this register is the new VLAN association for this frame and shall be added to this frame.		
		3: The VLAN ID indicates in this register is the new VLAN association for this frame and shall replace the one present in the frame.		
Priority	15:12	Indicates the internal switch priority associated with this frame.		
VLAN ID	11:0	Indicates the VLAN association for this frame.	RO	0
RSVD	31:24	Reserved. Set to 0.	RV	0

Table 9LCI_RX_FRAME_STATUS

Name	Bit	Description	Туре	Default
Padding	5:3	The number of bytes in the last word that are not valid	RO	0
Underflow	2	There was an underflow during this frame on the TX side.	RO	0
Fabric Error	1	The error bit in the fabric was set for this frame.	RO	0
Bad CRC	0	Packet had a bad CRC	RO	0
RSVD	31:6	Reserved. Set to 0.	RV	0

Table 10 LCI_TX_LEN

Name	Bit	Description	Туре	Default
Switch Mode	31	x0 – Lookup mode – The switch uses the resources of the packet processor to forward the packet, behaving as an ordinary port, and subject to all policy checks of an ordinary port. x1 – Directed mode - The Dmask of LCI_TX_DMASK is used to specify the output port. The switch does not learn or check source addresses in this mode. A frame forwarded in this mode should never be discarded as a reason of policy. Though it is ok to discard this frame for congestion management.	RW	0
Packet Length	15:0	Length of the packet to be transmitted. Includes length of CRC even if the switch is adding the CRC.	RW	0
RSVD	30:16	Reserved. Set to 0.	RV	0

Table 11 LCI_TX_DMASK

Name	Bit	Description	Туре	Default
Dmask	24:1	Destination bit mask of the packet to be transmitted. If any bit of the DMASK is set, then the frame is forwarded in directed mode. If the DMASK=0 then the frame is forwarded in lookup mode.	RW	0
RSVD	31:25; 0	Reserved. Set to 0.	RV	0

3.5.1.6 Switching Modes

Frames may be transmitted in either of two modes

Directed Mode

• The frame is sent to the output ports without any applied policies.

- No VLAN, security, spanning tree, or trigger checks.
- This is a physical port, there is no canonical port resolution.
- The switch may discard these frames for congestion management
- Source addresses are not learned.
- The LCI may overwrite the CRC field with a correct CRC.
- There is no VLAN tagging or stripping

Lookup Mode

- Frame is transmitted as an ordinary packet. The CPU is indistinguishable from any other station on the network.
- The LCI may overwrite the CRC field with a correct CRC.

3.5.1.7 Data Integrity

The LCI has CRC generation capability. This is purely a convenience for the CPU.

- If the CRC is enabled then packets transferred from the CPU to the switch do not require a valid CRC. In this case the last four bytes are overwritten with a valid CRC (note: the packet data transmission must include space for the CRC).
- If CRC generation is not enabled, then it is a requirement of software to generate a valid CRC.
- The CRC is not used to check data integrity in the transmission from CPU to the switch. There is a parity check in the CPU Interface for transmission from the CPU to the switch.

3.5.2 Bootstrap Finite State Machine

{Described in registers Table 34}

The BOOT FSM is normally the initial chip manager.

If the AUTOBOOT signal is asserted, then the BOOT FSM starts automatically after RESET is de-asserted, initializing the chip according to the content of fusebox and returning control to the CPU Interface after the initialization is completed.

If the AUTOBOOT signal is de-asserted, then the BOOT FSM will only start if the CPU forces it to start. The CPU in this case will indicate which phases shall be executed. It is not possible to change order, it is only possible to either execute one phase or skip over that phase. Starting the BOOT FSM and defining which phase is executed is controlled by the CHIP_MODE register.

The BOOT FSM can go through 3 phases: FUSEBOX processing, RAM initialization, EEPROM processing.

3.5.2.1 Boot Phase 1 – Fusebox

During this phase, the BOOT FSM read the fusebox and stores the value read into the FUSEBOX CSRs which could be later on read by the CPU. Then the BOOT FSM uses the content of the FUSEBOX to set default registers inside the chip and to do RAM repair.

The BOOT FSM could also be commanded by the CPU to use the content of the SHADOW FUSEBOX CSRs and ignore the real fusebox. It is assumed in this case that the CPU will load valid content in the SHADOW FUSEBOX prior to activating the BOOT FSM. This enables field repair of SRAM defects.

3.5.2.2 Boot Phase 2 – Memory initialization

During this phase, the BOOT FSM initializes the memory to default values and also initializes the list of pointers in the scheduler.

3.5.2.3 Boot Phase 3 – EEPROM read

EEPROM operations will be started if the EEPROM_ENABLED pin-strap is set.

The SPI FSM will issue one read command to address 24'd0 – the EEPROM will continue to auto-increment through all of its memory. The BOOT FSM will be able to stall the SPI FSM in –order to give time to any required fusebox operations.

3.5.2.4 Management Bus

The Management bus is used to read / write registers. Access to the management bus is granted with the following precedence.

- BOOT FSM
- JTAG
- CPU Interface

3.5.2.5 Scan Chains Converter

The Scan Chain Converter is a management feature that converts management requests into DFT scan chain requests to grant scan access to the device from the CPU.

The scan chains are used to check the DFT state of FocalPoint. Access to the scan chains are granted with the following precedence:

- External SCAN IF
- JTAG
- Management (CPU Interface or BOOT FSM)

3.5.3 CPU Interface

{Described in registers Table 45}

The CPU interface in the FM2224 is a 24-bit address, 32-bit data bus used to access the registers, tables, and frames. The interface uses a handshaking protocol to allow a variable amount of delay to respond to requests. It supports off-chip DMA functionality.

3.5.3.1 General Description

- Slave-terminated protocol that allows a variable amount of delay to respond to requests
- 32-bit data interface, supporting single, Big Endian, read/write transactions
- Supports parity checking on the data bus
- Interrupt generation
- Support for off-chip DMA PCI bridge devices.
- Maximum frequency range of 66MHz
- Throughput
 - Reads at 528 Mb/s
 - Writes at 1056 Mb/s

3.5.3.2 IO requirements

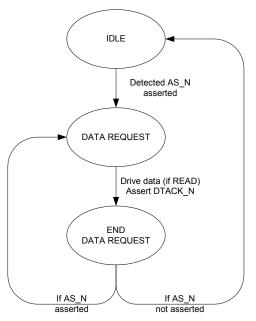
- IO power supply = 3.3v
- $V_{IH} \min = 2v$, $V_{IL} \max = 0.8v$.
- TTL compatibility

3.5.3.3 Register Read/Write Operations

Reads and writes always act on a 32-bit word in the FM2224. Every bus request will always return a response, even if the request was to an unsupported address.

 Table 12
 CPU Interface External IO Description

Signal Name	Direction	Description	
ADDR[23:2]	In	Address, word aligned	
RW_N	In	Read/Write select	
DATA[31:0]	In / Out	Data	
PAR[3:0]	In / Out	Data parity per byte	
AS_N	In	Address Strobe	
CS_N	In	Chip Select	
DTACK_N	Out	Data Acknowledge	
DERR	Out	Data Error	
INTR_N	Out	Interrupt	
RESET_N	In	Reset	


3.5.3.4 CPU interface Operation

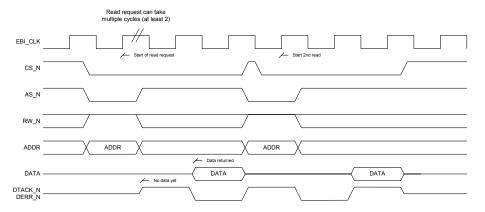
The CPU Interface timing diagram is shown in Figure 25 and Figure 26. All input signals and all output signals are driven (or tri-stated) at the rising edge of CLK.

There are two main control signals – one to qualify the incoming request (AS_N) and the other to qualify the completion of the request (DTACK_N). There are no timing requirements from the start to the completion of a request. A write will always complete its request on the next cycle following a write request.

Figure 24 CPU Bus Interface State Diagram

CPU Interface address space

The Chip-Level address space 0x00000-0x000FF is for the CPU Interface. There are no physical registers within it but if a read to this address range occurs then {31'd0,CPUI_STALL} will be returned. CPUI_STALL indicates whether the CPU Interface is being told to STALL (ie - the BOOT or JTAG are currently using the management bus).


Table 13 CPU Interface Address Space

Address Range	Module	Usage
0x00000-0x000FF	CPU Mgmt	There are no physical registers within this module. If a read to this address range occurs then {31'd0,CPUI_STALL} will be returned. CPUI_STALL indicates whether the CPU Interface is being told to STALL (ie - the BOOT or JTAG are currently using the management bus). A write will be ignored.

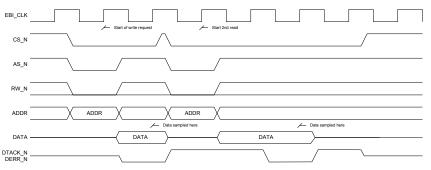

The bus timing interface for read and writes are shown in next two figures. The minimum read frequency is 3 cycles and 2 for writes.

Figure 25 CPU Interface Read Timing Diagam

Figure 26 CPU Interface Write Cycles

3.5.4 SPI Interface (EEPROM)

There are three supported instructions which are always aligned to 32b:

- WRITE(8b) the write command will be followed by two arguments: 24b (last 2b ignored) address and 32b data 64b in total
- WAIT(8b) the wait command will be followed by 1 argument: 24b cycles to wait. Cycles are expressed in terms of the clock used by the CPU Interface. 32b total
- DONE (8b) EEPROM sequence is finished. Followed by RSVD (24b).

3.5.4.1 SPI (Serial Peripheral Interface) controller

A Serial peripheral Interface is needed to access bootstrap code from an off chip ROM.

- The SPI interface has the following constraints
 - Only support 3 byte addressing
- Support of one Chip Select
 - The EEPROM size is restricted to 64Kb 2Mb this is sufficient for about 30k instructions in a 2Mb part.
- Support of one Mode 0 (CPOL=0,CPHA=0 transmit data on the falling edge of the SPICLK and receive data on the rising edge of the SPICLK signal) device (only one CS required)
- Support frequency of operation up to 40 MHz
- Interoperability note: The SPI works with following parts:
 - ST FLASH and EEPROM

Fulcrum Confidential

- ATMEL FLASH
- Fairchild EEPROM
- AKM EEPROM
- MicroChip EEPROM

Table 14 SPI External Interface Pin List

Signal name	Signal direction	Signal description	
SPI_SO	OUT	Serial Data Output	
SPI_CS_N	OUT	SPI Chip Select (Active Low)	
SPI_SCK	OUT	CLOCK for SPI interafce.	
SPI_SI	IN	Serial Data Input	

A SPI transaction is shown in Figure 27 and described below:

- Activate SPI_CS_N and assert first data bit
- On the negative edge the clock, send the following bit stream MSB first
 - Send instruction 8'h3 (I[7:0])
 - Send 3 bytes of address (A[23:0])
- On the positive edge of the clock, receive each bit of data. This will continue until BOOT FSM asserts
- De-activate SPI_CS_N, Tri-state SPI_SO.

Figure 27 SPI Timing Diagram

SPI_CS_N						
SPI_SO [[7] [6:0] A[23:16] A[15:8] A[7:0]]					
SPI_SI	D[31:24] D[31:24] D[31:24] D[31:24] D[0]					

3.5.5 LED Interface

The LED interface consists of 4 signals, CLK, DATA0, DATA1, DATA2, and ENABLE, which transmits 3 bits of status data for the LED per port over the time multiplexed data pins. The 3 bits of status of ports 0-8 are placed onto Data0 and the 3 bits of status on ports 9-16 are placed onto Data1 and the 3 bits of status of ports 17-24 are placed onto Data2.

There are two modes of operation.

Mode=0: This mode selects operations compatible to devices such as the SGS Thompson M5450 LED display drive type device. Data polarity is non-inverted.

Mode=1: This mode selects operations compatible with a standard octal shift register such as (74HC595). Data polarity is inverted.

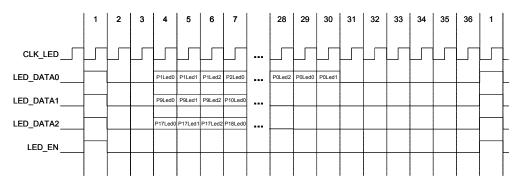

The only difference between the 2 modes is the polarity of the data. Both will cycle through a continuous 36b cycle pattern. The data for each LED is placed serially on the appropriate data line and clocked out by LED_CLK. See Table below for details on the sequence.

Table 15Port LED Sequence

Cycle	LED_Data0	LED_Data1	LED_Data1	Description
1	Start Bit	Start Bit	Start Bit	Used to start the 48b series. Will always be a logical 1
2:3	Pad Bits	Pad Bits	Pad Bits	Used as fillers in the data stream to extend the length to the required 36b frame length. These bits will always be logical 0.
4:27	LED Data Bits Port1 bits 0,1,2 Port8 bits 0,1,2	LED Data Bits Port9 bits 0,1,2 Port16 bits 0,1,2	LED Data Bits Port17 bits 0,1,2 Port24 bits 0,1,2	Actual data to be transmitted
28:30	Port0 bits 0,1,2	Pad bits	Pad bits	
34:36	Pad Bits	Pad Bits	Pad Bits	Enable will be asserted synchronously with bit 36

Figure 28 Serial LED Timing Diagram

Below is the encoding of the 3 bits per port:

- Port LED0 (Red)
 - Off Port has no link synch or remote fault error
 - On Port has a link synch error or no signal
 - Blinking Port has a remote fault
- RX LED1 (Green)
 - Off Port is not enabled
 - On Port has link and is enabled
 - Blinking Port is receiving data (rate will be controllable by a programmable decimated clock and fixed hysteresis value which when latches indicates that traffic has been received)
- TX LED2 (Green)
 - Off Port is not transmitting data

• Blinking - Port is receiving data (rate will be controllable by a programmable decimated clock and some fixed hysteresis value which when latches indicates that traffic has been transmitted.

This interface clock is a multiple of CLK_CPUI and CLK_LED.

3.5.6 JTAG

The JTAG controller is compliant to the IEEE 1149.1-2001 specification. The JTAG provides basic external chip debug features,

- Access to an identification register.
- Access to the boundary scan.
- Access to the internal scan chains.
- Ability to Clamp and HighZ all outputs (except SerDes).

The maximum frequency of operation is 40MHZ.

The Supported operations of these registers are:

- Load IR (instruction register)
- Capture initializes/captures/freezes value of register
- Shift serially shifts in/out value into/out of register.
- Update validates the contents of the register. Ie. Logic can now use the new value for its internal operation.

The JTAG reset domain is separate and independent from the chip reset domain.

3.5.6.1 Tap Controller

The tap controller is a finite state machine of 16 states controlled by the 5 pin JTAG interface. It is defined by IEEE 1149.1-2001.

3.5.6.2 Instruction Register

Supported JTAG Instructions

Table 16 Supported JTAG Instructions

Instruction	Code (6b)	Description
IDCODE	x01	Selects the identification register.
SAMPLE/PRELOAD	x02	Select the boundary scan register. Sample input pins to input boundary scan register, preload the output boundary scan register.
EXTEST	x03	Select the boundary scan register. Output boundary scan register cells drive the covered output pins. Input boundary cell registers sample the input pins.
HIGHZ	x06	Selects the bypass register and sets all covered output pins to high impedance.
CLAMP	x07	Forces a known value on the outputs, but uses the bypass register to shorten scan length.
BYPASS	x3F	Selects the bypass register.

3.5.6.3 Bypass Register

The bypass register is a 1 bit register that connects between TDI and TDO. When the bypass register is selected by the instruction, the data driven on the TDI input pin is shifted out the TDO interface one cycle later.

3.5.6.4 JTAG Scan Chain

The boundary scan register is an 89-bit deep shift register. Refer to the BSDL description file for pin assignment.

Table 17JTAG ID Register

Bit	Description	Value
31:28	Version Number	0x01
27:12	Manufacturer part number	0xae18
1:11	Manufacturer ID	0x215
0	Mandatory JTAG field	b1

3.6 Clocks

3.6.1 SerDes Clocks, RCK[A:B][1:4]P/N

The SerDes reference clocks are externally provided, low jitter, differential CMOS/CML clocks in the range of 100MHz to 400MHz, representing 1/10th the serial data rate. The requirements for these inputs are given in Table 18.

Table 18 Reference Clock Requirements

Symbol	Description	Min	Тур	Max	Units
V _{IL-RC}	Low-level CML/CMOS input voltage	0		V _{DD} - 0.5	V
V _{IH-RC}	High-level CML/CMOS input voltage	0	V _{DD}		V
	Clock frequency range	100		400	MHz
	Duty cycle	40	50	60	%
	Skew between differential inputs			.05	RCUI
J _{CLK-REF}	Input jitter (peak to peak)			0.1	UI
T _{RRef} , T _{FRef}	Rise/Fall time of differential inputs		0.2	0.25	RCUI

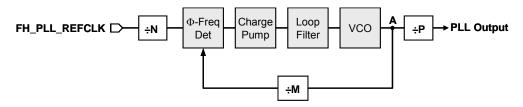
3.6.2 CPU Interface Clock

The clock source for the CPU interface on the FM2224 must meet the following requirements:

- 3.3V CMOS drive
- Maximum frequency of 100 MHz.

3.6.3 JTAG Clock

The FM2224 supports JTAG. The clock source must meet the LVTTL specification and:



- Duty cycle distortion of 40/60%, maximum
- Maximum frequency of 40 MHz

3.6.4 Frame Handler Clock

The frame handler clock controls the rate at which frame headers are processed in the frame handler block. Frame headers are processed one header per clock cycle, so if the aggregated 24-port frame throughput is desired to be 300 million frames per second, the frame handler clock must be set at 300 MHz. The frame handler clock is generated by an internal PLL using the FH_PLL_REFCLK clock input pin as its input. The relationship between the input frequency and the PLL output frequency to the frame handler is controlled by parameters input in the PLL_FH_CTRL register (See Table 41). A simplified schematic of the PLL circuit is shown that will clarify the meaning of the input parameters.

The resulting equation governing the PLL output is:

$$PLL_OUT = FH_PLL_REFCLK \times \frac{M}{NP}$$

Where:

- N \Rightarrow 1 to 16
- $M \Rightarrow 4 \text{ to } 128$
- $150 \text{ MHz} < F_{VCO} \text{ (point A)} < 650 \text{ MHz}$
- 12.5 MHz < PLL output < 360 MHz
- 1.2 MHz < FH PLL REFCLK < 70 MHz

Note:

See Table 42 for examples of N, M, and P settings.

4.0 Electrical Specifications

The following tables provide recommended operating conditions for the FM2224:

4.1 Absolute Maximum Ratings

Table 19Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Core Voltage	V _{DD}	-0.3	2	Volts
SerDes Supply Voltage	V _{DDX}	-0.3	2	Volts
SerDes Bias Voltage	V _{DDA}	-0.3	2	Volts
Transmitter Termination Voltage	V _{TT}	-0.3	2	Volts
LVTTL Power Supply	V _{DD33}	-0.3	3.9	Volts
PLL Analog power supply	V _{DDA33}	-0.3	3.9	Volts
Case Temp under bias		-	+130	°C
Storage Temp		-65	+150	°C
ESD		-2000	+2000	Volts

4.2 Recommended Operating Conditions

Table 20 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Core Voltage	V _{DD}	1.1	1.2	1.3	Volts
SerDes Supply Voltage	V _{DDX}	1.1	1.2	1.3	Volts
SerDes Bias Voltage	V _{DDA}	1.1	1.2	1.3	Volts
LVTTL Power Supply	V _{DD33}	3.0	3.3	3.6	Volts
PLL Analog power supply	V _{DDA33}	3.0	3.3	3.6	Volts
Transmitter Termination Voltage	V _{TT}	Vdd	1.5	1.8	Volts
Operating Temp (Case)					
Commercial ¹		0	+40	+70	°C
Extended ²		-20	+50	+85	°C

(1) Commercial grade version of the device

(2) Extended grade version of the device

Note

For information on calculating the power budget for a particular application, refer to page 153.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
HIGH Force Tri-State output leakage	I _{OZH}	V _{DD} = Max V _o =V _{DD}	-1	-	+1	μA
LOW Force Tri-State output leakage	I _{OZL}	V _{DD} =Max V₀=GND	-1	-	+1	μA
Output HIGH Current	I _{ODH}	V _{DD} =1.2 V, V _{DD33} =3.3 V, V _O = 1.5 V	-	-17	-	mA
Output LOW Current	I _{ODL}	V_{DD} =1.2 V, V_{DD33} =3.3 V, V_{O} = 1.5 V	-	20	-	mA
Output HIGH Voltage	V _{OH}	V _{DD} = Min V _{DD33} =Min I _{OH} = -0.4 mA	V _{DD33} - 0.2	-	-	V
Output HIGH Voltage	V _{OH}	V _{DD} = Min V _{DD33} =Min I _{OH} = -4.0 mA	V _{DD33} - 0.5	-	-	V
Output LOW Voltage	V _{OL}	V _{DD} = Min V _{DD33} =Min I _{OL} = -0.4 mA	-	-	0.2	V
Output LOW Voltage	V _{OL}	V_{DD} = Min V_{DD33} =Min I_{OL} = -4.0 mA	-	0.2	0.4	V
Short Circuit Current	I _{OS}	V _{DD} =MAX V _o =GND			-32	mA
Power Supply Quiescent Current	I _{AA}	V _{DD} = Max V _{DD33} =Max			74	μA
Power Supply Quiescent Current	I _{AA}	Tri-stated			-1	μA

Table 21 DC Characteristics of 4mA LVTTL Outputs

Parameter	Symbol	Test Conditions	Min	Typical	Max	Units
HIGH Force Tri-State output leakage	I _{OZH}	V _{DD} = Max V _o =V _{DD}	-1	-	+1	μA
LOW Force Tri-State output leakage	I _{OZL}	V _{DD} =Max V₀=GND	-1	-	+1	μA
Output HIGH Current	I _{ODH}	V _{DD} =1.2 V, V _{DD33} =3.3 V, V _O = 1.5 V	-	-35	-	mA
Output LOW Current	I _{ODL}	V _{DD} =1.2 V, V _{DD33} =3.3 V, V _O = 1.5 V	-	-40	-	mA
Output HIGH Voltage	V _{он}	V _{DD} = Min V _{DD33} =Min I _{OH} = -0.4 mA	V _{DD33} - 0.2	-	-	V
Output HIGH Voltage	V _{он}	V _{DD} = Min V _{DD33} =Min I _{OH} = -4.0 mA	V _{DD33} - 0.5	-	-	V
Output LOW Voltage	V _{OL}	V _{DD} = Min V _{DD33} =Min I _{OL} = -0.4 mA	-	-	0.2	V
Output LOW Voltage	V _{OL}	V_{DD} = Min V_{DD33} =Min I_{OL} = -4.0 mA	-	0.2	0.4	V
Short Circuit Current	I _{OS}	V _{DD} =MAX V _o =GND			-64	mA
Power Supply Quiescent Current	I _{AA}	V _{DD} = Max V _{DD33} =Max			74	μA
Power Supply Quiescent Current	I _{AA}	Tri-stated			-1	μA

Table 22 DC Characteristics of 8mA LVTTL Outputs

Table 23 DC Characteristics of LVTTL Inputs

Parameter	Symbol	Test Conditions	Min	Typical	Max	Units
Input HIGH Level (Input and I/O pins)	VIH	Guaranteed Logic HIGH Level	2	-	V _{DD33} +0.5	V
Input LOW Level (Input and I/O pins)	VIL	Guaranteed Logic LOW Level	-0.3	-	0.8	V
Input Hysterisis	V _H	itO		5		mV
Input Hysterisis	Vн	it2		200		mV
Input HIGH Current (Input pins)	I _{IH}	V _{DD} =Max, V _I =V _{IH} (Max)			+-1	μA
Input HIGH Current (I/O pins)	I _{IH}	V _{DD} =Max, V _I =V _{CC}			+-1	μA
Input LOW Current (Input pins)	IIL	V _{DD} =Max, V _I =GND			+-1	μA
Input LOW Current (I/O pins)	IIL	V _{DD} =Max, V _I =GND			+-1	μA
Clamp Diode Voltage	Vik	V _{DD} =Min, I _{IN} =-18mA		-0.7	-1.2	V
Quiescent Power Supply Current	I _{DD33L}	V _{DD} =Max, V _{CC} =Max, V _{IN} =GND		0.1	10	μA
Quiescent Power Supply Current	I _{DD33H}	V _{DD} =Max, V _{CC} =Max, V _{IN} =V _{DD}		0.1	10	μA

4.3 AC Timing Specifications

Table 24 XAUI Transmitter Characteristics

Symbol	Parameter	Min	Тур	Max	Units
V _{SW}	Output voltage (peak-to-peak, single- ended)	200 ^a	500	750 ^b	mV
VDIFF-PP	Output voltage (peak-to-peak, differential)	400 ^a	1000	1500 ^b	mV
V _{OL}	Low-level output voltage		Vtt-1.5* V _{SW}		
V _{OH}	High-level output voltage		Vtt-0.5* V _{SW}		
V _{TCM}	Transmit common-mode voltage ^c		Vtt-V _{SW}		
	Transmitter Total Jitter (Peak-Peak) ^d			.24	
J _{TT} @1.25 Gb/S	Random jitter component (RJ)			.12	UI
00.0	Deterministic jitter component (DJ)			.12	
	Transmitter Total Jitter (Peak-Peak) ^d			.35	
J _{TT} @3.125 Gb/S	Random jitter component (RJ)			.18	UI
00/0	Deterministic jitter component (DJ)			.17	
Z _{OSE}	Single Ended Output Impedance	40	50	60	Ohms
Z _D	Differential Output Impedance	80	100	120	Ohms
T _{TR} , T _{TF}	Rise, fall times of differential outputs ^e	80		110	ps

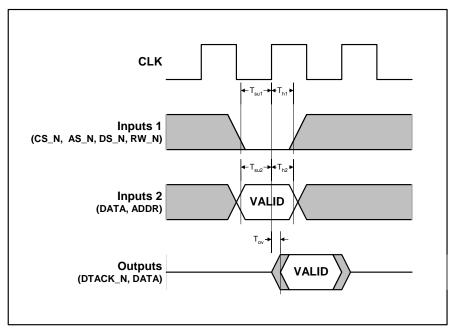
a. HiDrv bit set to 0, LoDrv bit set to 1 in SERDES_CNTL_2 register – see Table 131, and Current Drive bits set to 1100 in SERDES_CNTL_1 register – see Table 129.

b. VTT = 1.8V, HiDrv bit set to 1, LoDrv bit set to 0 in SERDES_CNTL_2 register – see Table 131, and Current Drive bits set to 0011 in SERDES_CNTL_1 register – see Table 129.

- c. AC coupled operation only
- d. Based on CJPAT.
- e. 20% to 80%.

Table 25 XAUI Receiver Characteristics

Symbol	Parameter	Min	Тур	Max	Units
V _{LOS}	Low signal differential input threshold voltage	85			mV
V _{IN}	Differential input voltage, peak to peak	170		2000	mV
V _{RCM}	Common mode voltage		0.70		V
T _{RR} , T _{RF}	T _{RF} Rise, fall times of differential inputs			160	ps
	Total jitter tolerance ^a			.71	
J _{RT} @ 1.25 Gbps	Random jitter component (RJ)			.26	UI
	Deterministic jitter component (DJ)			.45]
	Total jitter tolerance ^a			.65	
J⊤⊤@ 3.25 Gbps	Random jitter component (RJ)			.24	U
0000	Deterministic jitter component (DJ)			.41	1
Z _{IN}	Impedance, single-ended	40	50	60	Ω


L _{DR}	Differential return loss ^b	10		dB
V _{RHP}	Hot plug voltage (applied with power on or ${\rm off)}^{\rm c}$	5	1.6	V
a. CJPAT				

b. Frequency range of 100MHz to 1.875GHz

c. Without damage to any signal pin

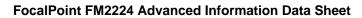

4.3.1 CPU Interface, General Timing Requirements

Figure 30 CPU Signal Timing

Table 26 CPU Interface Timing Constraints

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Setup time for CS_N, AS_N, DS_N and RW_N, to rising edge of clock	Tsu1	3.0	-	-	ns	-
Hold time for CS_N, AS_N, DS_N and RW_N, to rising edge of clock	Th1	0.5	-	-	ns	-
Setup time for ADDR and DATA(in) to rising edge of clock	Tsu2	3.0	-	-	ns	-
Hold time for ADDR and DATA(in) to rising edge of clock	Th2	0.5	-	-	ns	-
Output valid for DTACK_N and DATA(out) to rising edge of clock	Tov	0	-	4.5	ns	

Notes

- DTACK_INV, RW_N_INV, IGNORE_DS_N, SYNC_MODE are static signals. They must be stable before RESET_N is de-asserted.
- BUSIF_RESET and INTR are asynchronous signals.
- Typical latency to access an internal 32-bit register is in the range of 100-150ns

4.3.2 JTAG Interface

The JTAG interface follows standard timing as defined in the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture, 2001.

Note When not using the JTAG interface, either drive the TCK pin with an external clock, or drive the TRST_N pin low. Conversely, when using the JTAG interface assert TRST_N along with chip reset to ensure proper reset of the JTAG interface prior to use.

5.0 Register Definitions

This section provides information on the registers used in the FM2224. Although the registers are generally directly accessible, it is recommended that they be accessed through the Fulcrum API where related registers can be rationally configured as a group in the context of the application.

5.1 Register Conventions

Registers follow these conventions:

- All registers are 32 bits in length
- Tables may be more than 32 bits in length
- There are four types of register fields:
 - RW Read / Write
 - RO Read Only
 - CR Clear on Read
 - PIN Pin
- Registers are located on different reset domains and are reset to their default value only when their respective domain is reset. The reset domains are:
 - Global Reset Domain: Reset only when CHIP RESET N is asserted
 - Ethernet Port Logic Reset Domain: Reset when CHIP_RESET_N is asserted or the port reset is active (see PORT_RESET register)
 - Frame Handler Reset Domain: Reset when frame handler reset is asserted (see SOFT_RESET register)
- **Note:** The entries in the MAC address (MA), VLAN Information Database (VID), Forwarding Information Database (FID), and Management Information Base (MIB) tables are larger than 32 bits, as follows: MA: 95 bits; VID: 64 bits; FID: 50 bits; MIB: 64 bits. FocalPoint supports atomic access to these addresses. A read or write to the MAC address, VLAN, or Flooding ID tables, or the read of a MIB counter is atomic.

5.2 Register Map

Note: The statistics register map is detailed in section 5.7.

Table 27Global Register List

	Global Registers				
Name	Reset Domain	Description	Address		
BOOT_STATUS	Global	Boot status	0x00000		
SOFT_RESET	Global	Reset switch by software	0x00300		
PORT_RESET	Global	Reset port by software	0x00318		
CHIP_MODE	Global	Configures various chip-level modes	0x00301		
CLK_MULT_1	Global	Clock multiples between the CPU interface, LED interface, and SPI interface	0x00302		
FRAME_TIME_OUT	Global	Configures whether (and how) frames time out	0x00303		

VPD	Global	Vital Product Data	0x00304
PLL_FH_CTRL	Global	Frame Handler PLL Control	0x00315
PLL_FH_STAT	Global	Frame Handler PLL Status	0x00316
PORT_CLK_SEL	Global	Selects between 2 CML clocks per port	0x00317

Table 28 Switch Configuration Register List

Switch Configuration Registers					
Name	Reset Domain	Description	Address		
INTERRUPT_DETECT	Global	Detects an interrupt	0x00309		
GLOBAL_EPL_INT_DETECT	Global	Detects an interrupt on a port	0x0030A		
MGR_IP	Global	Chip interrupt pending	0x0030B		
MGR_IM	Global	Chip interrupt mask	0x0030C		
FRAME_CTRL_IP	Global	Frame control interrupt pending	0x0030D		
FRAME_CTRL_IM	Global	Frame control interrupt mask	0x0030E		
PERR_IP	Global	Parity error interrupt pending	0x00312		
PERR_IM	Global	Parity error interrupt mask	0x00313		
PERR_DEBUG	Global	Parity error debug	0x00314		
TRIGGER_IP	FH	Trigger interrupt pending	0x640C6		
TRIGGER_IM	FH	Trigger interrupt mask	0x640C7		
PORT_MAC_SEC_IP	FH	MAC security interrupt pending	0x640C4		
PORT_MAC_SEC_IM	FH	MAC security interrupt mask	0x640C5		
PORT_VLAN_IP_1	FH	VLAN violation interrupt pending	0x640C2		
PORT_VLAN_IM_1	FH	VLAN violation interrupt mask	0x640C3		
PORT_VLAN_IP_2	FH	VLAN violation interrupt pending	0x640C0		
PORT_VLAN_IM_2	FH	VLAN violation interrupt mask	0x640C1		
SYS_CFG_1		General feature configuration	0x60001		
SYS_CFG_2	Mgmt	General feature configuration in the asynchronous logic	0x58121		
SYS_CFG_3	Global	Most significant bit of the CPU's MAC address (Port 0)	0x60002		
SYS_CFG_4	Global	Least significant bit of the CPU's MAC address (Port 0)	0x60003		
SYS_CFG_6	Global	Ether-type Trap	0x60004		
SYS_CFG_7	Global	Age time	0x0030F		
PORT_CFG_1 [124]	Global	Security and VLAN settings	0x54000+i		
PORT_CFG_2 [124]	Global	Port-based VLAN flood map	0x60060+i		
HEADER_MASK [03]	Mgmt	128-bit mask of the Ethernet header	0x58110 0x58111		

Γ		0x58112
		0x58113

Table 29 Logical CPU Interface Register List

LCI Configuration Registers				
Name	Reset Domain	Description	Address	
LCI_RX_FIFO	Mgmt	LCI RX FIFO	0x04000	
LCI_TX_FIFO	Mgmt	LCI TX FIFO	0x04001	
LCI_IP	Mgmt	LCI interrupt	0x04002	
LCI_IM	Mgmt	LCI interrupt mask	0x04003	
LCI_STATUS	Mgmt	LCI status	0x04004	
LCI_CFG	Mgmt	LCI mode configuration	0x04005	

Table 30 Bridge Register List

	Bridge Registers					
Name	Reset Domain	Description	Address			
MA_TABLE[016383]	Global	MAC address table	0x10000+i*4			
VID_TABLE[04095]	Global	VLAN table	0x50000+i*2			
FID_TABLE[04095]	Global	Spanning tree status per VLAN	0x52000+i*2			
MA_TABLE_CFG	Mgmt	MAC address table configuration	0x58120			
MA_TABLE_STATUS_1	Mgmt	Status of switch-modified entries in the MAC address Table	0x58000			
MA_TABLE_STATUS_2	Mgmt	Bin full count and hash	0x58001			
MA_TABLE_STATUS_3	Mgmt	No source address lookup count	0x03010			
TRUNK_PORT_MAP [124]	FH	Indicates whether a port is in a Link Aggregation Group	0x63000+i			
TRUNK_GROUP_1 [011]	FH	Link Aggregation Group entries 0-5	0x63020+i			
TRUNK_GROUP_2 [011]	FH	Link Aggregation Group entries 6-11	0x63040+i			
TRUNK_GROUP_3 [011]	FH	Length of Link Aggregation Group	0x63060+i			
TRUNK_CANONICAL [124]	FH	Mapping to canonical port	0x60020+i			
TRUNK_HASH_MASK	FH	byte mask for link aggregation hash function	0x61000			
TRIGGER_CFG [015]	FH	Configures user programmable triggers	0x62020+i			
TRIGGER_PRI [015]	FH	Switch priority to be in trigger	0x62040+i			
TRIGGER_RX [015]	FH	Source port of trigger	0x62060+i			

TRIGGER_TX [0..15] FH Destination port of trigger 0x62080+i

Table 31 Congestion Management Register List

Traf	fic Manage	ment Registers	
Name	Reset Domain	Description	Address
RX_PRI_MAP [024]	FH	Mapping of ingress priority to switch priority	0x60040+i
CM_PRI_MAP_1	FH	Mapping 1 of switch priority to WRED priority	0x64000
CM_PRI_MAP_2	FH	Mapping 2 of switch priority to WRED priority	0x64001
SCHED_PRI_MAP	FH	Mapping of switch priority to scheduling priority	0x60000
LFSR_CFG	FH	Random number configuration for WRED	0x64002
QUEUE_CFG_1 [024]	FH	RX and TX queue shared watermark for frame discard check	0x64020+i
QUEUE_CFG_2 [024]	FH	RX private watermark and configuration	0x64040+i
QUEUE_CFG_3	FH	Congestion management priority watermark selection	0x65000
QUEUE_CFG_4	FH	Congestion management low and high watermark	0x64003
QUEUE_CFG_5	FH	Global queue watermark of last resort	0x64004
STREAM_STATUS_1 [024]	FH	Occupancy for RX and TX queues	0x64060+i
STREAM_STATUS_2	FH	Occupancy of global stream memory	0x64008
EGRESS_SCHED_1	Mgmt	Egress scheduling configuration	0x02040
EGRESS_SCHED_2	Mgmt	Egress scheduling weights	0x02041
GLOBAL_PAUSE_WM [024]	FH	Watermarks for PAUSE based on stream memory occupancy	0x64080+i
RX_PAUSE_WM [024]	FH	Watermarks for PAUSE based on RX queue occupancy	0x640A0+i
SAF_MATRIX[024]	FH	Cut-through switching configuration	0x650C0+i
JITTER_CFG	Mgmt	Configures the TX jitter controller	0x020FC

Table 32 Ethernet Port Logic Register List

PHY Registers (EPL register addresses are 0x8000 + 0x400*(N-1) + Offset, where N is the port number)

Name	Reset Domain	Description	Offset
SERDES_CTRL_1	EPL	Per-lane DEQ and DTX	0x000
SERDES_CTRL_2	EPL	Lane, PLL, and mode control	0x001
SERDES_CTRL_3	EPL	Signal detect de-assertion count	0x002
SERDES_TEST_MODE	EPL	BIST test modes	0x003
SERDES_STATUS [124]	EPL	Counter for any interrupt in the SERDES	0x004
SERDES_IP	EPL	SERDES interrupt pending	0x005
SERDES_IM	EPL	SERDES interrupt mask	0x006
SERDES_BIST_ERR_CNT	EPL	BIST error count per lane.	0x008
PCS_CFG_1	EPL	PCS Control	0x009
PCS_CFG_2	EPL	Data value on local TX fault	0x00A
PCS_CFG_3	EPL	Data value on remote TX fault	0x00B
PCS_CFG_4	EPL	Data value on signal ordered set Sent	0x00C
PCS_CFG_5	EPL	Data value on signal ordered set received	0x00D
PCS_IP	EPL	PCS interrupt pending	0x00E
PCS_IM	EPL	PCS interrupt mask	0x00F
PACING_PRI_WM [07]	EPL	Watermarks per priority for inter-frame gap stretch	0x010+i
PACING_RATE	PACING_RATE EPL gap st		0x018
PACING_STATUS	PACING_STATUS EPL Pacing status for ir gap stretch		0x019
MAC_CFG_1	EPL	MAC configuration 1	0x01A
MAC_CFG_2	EPL	MAC configuration 2	0x01B
MAC_CFG_3	EPL	MAC configuration 3: Pause time value	0x01C
MAC_CFG_4	EPL	MAC Configuration 4: Pause re-send time	0x01D
MAC_CFG_5	EPL	MAC configuration 5: Most significant 16 bits of the MAC address, SA for Pause	0x01E
MAC_CFG_6	EPL	MAC configuration 6: Least significant 32 bits of the MAC address, SA for Pause	0x01F
TX_PRI_MAP_1	EPL	Switch to egress 1	0x020
 TX_PRI_MAP_2	EPL	Switch to egress 2	0x021
MAC STATUS	EPL	Idle status	0x022
MAC IP	EPL	Interrupt pending	0x023
MAC IM	EPL	Interrupt mask	0x024
 EPL_INT_DETECT	EPL	Interrupt detect for the Ethernet Port Logic	0x02B

EPL_LED_STATUS	EPL	LED status bits	0x02A
STAT_EPL_ERROR1	EPL	Error count	0x025
STAT_EPL_ERROR2	EPL	Error count	0x028
STAT_TX_CRC	EPL	BAD CRC transmitted count	0x27
STAT_TX_PAUSE	EPL	Pause transmitted count	0x26
STAT_RX_JABBER	EPL	Received oversized with bad CRC	0x29
STAT_TX_BYTECOUNT	EPL	Transmit byte count	0x2C

Table 33 Scan Chain Access Register List

Global Registers				
Name	Ref	Description	Address	
SCAN_FREQ_MULT		Boot status	0x00100	
SCAN_CTRL		Reset switch by software	0x00101	
SCAN_SEL		Reset port by software	0x00102	
SCAN_DATA_IN		Configures various chip level modes	0x00103	
SCAN_DATA_OUT		Clock multiples between EBI and LED and SPI	0x00104	

5.3 Global Registers

5.3.1 Global Register Tables

Table 34 BOOT_STATUS

Name	Bit	Description	Туре	Default
Fusebox Processing	4	Indicates that the boot FSM has not completed this step yet.	RO	0
Memory Initialization	3	Indicates that the boot FSM has not completed this step yet.	RO	0
EEPROM Reading	2	Indicates that the boot FSM has not completed this step yet.	RO	0
Boot Running	0	The boot process is actually running (1) or completed (0). The CPU shall not attempt to read/write any register until this bit is 0.	RO	0
RSVD	31:5	Reserved. Set to 0.	RV	0

* If all steps are enabled, then this register will successively go through the following sequence: 0xF, 0x7, 0x3, 0x0.

Fulcrum Confidential

Table 35 SOFT_RESET

Name	Bit	Description	Туре	Default
Frame Handler Reset	1	The Frame Handler block goes into reset on CHIP_RESET_N and stays in reset until it is explicitly taken out of reset. Note: The bit enables the frame handler PLL to be initialized, while the block is in reset.	RW	1
Core Reset	0	Reset of Switch Element and Frame Processor (except the Frame Handler) Note: In this mode, it is not necessary to power down the SERDES, however all EPLs should be disabled before running Internal Reset. This bit will self-reset to 0 after 16 clocks. The software must wait at least 16 clock cycles after writing this bit to 1 before attempting to access any other registers.	RW	0
RSVD	31:2	Reserved. Set to 0.	RV	0

Note:

The management block is reset off of the CPU interface Reset. It includes LED, SPI, LCI, and other related blocks and interfaces.

The following Reset domains contain the "or" of the following signals: EPL(n): PORT_RESET[n] | ~CHIP_RST_N Switch Element and Frame Processor: Internal Reset | ~CHIP_RST_N Management: ~CHIP_RST_N CPU Interface: ~CPU_INT_RST_N | ~CHP_RST_N JTAG: ~TRST_N

TRST_N and CHIP_RST_N are independent domains.

Table 36PORT_RESET

Name	Bit	Description	Туре	Default
Port Reset	24:1	Reset Ethernet port logic per port. The bit number corresponds to the port number.	RW	1
RSVD	31:25, 0	Reserved. Set to 0.	RV	1

To use a port, the Port Reset bit must be cleared.

Any management access to a port in Reset will be trapped

- On a Write, the write data will have no effect
 - On a Read, a read data word of zero will be sourced to the management block

• There is no way to inspect the EPL register states of a port in reset through management. However, a port may be disabled, and its state may be debugged while it has an operational clock.

If all ports on a common clock are in Reset, it is safe to disable the port clock.

Name	Bit	Description	Туре	Default
Bypass PLL	13	Bypass the PLL in the Frame Handler and take the clock from off-chip.	RW	1
		Note: this is not the same as the PLL_FH_CTRL[bypass] bit.		
		This bit must be reset to 0 after the bootstrap is completed and FH PLL has been initialized and locked for the device to work properly. This bit should be held at 1 for		
		scan test of the Frame Handler.		
Use Shadow Fuses	12	x1 – Use the shadow fusebox registers as a fusebox x0 – Use the real fusebox.	RW	0
Exec Fusebox	11	x1 – Execute fusebox processing phase of BOOT FSM, this include setting port numbers and repairing RAMs.	RW	0
		x0 – Do not execute EEPROM phase of BOOT FSM		
Exec Mem Init	10	x1 – Execute memory initialization phase of BOOT FSM.	RW	0
		x0 – Do not execute EEPROM phase of BOOT FSM		
Exec EEPROM	9	x1 – Execute EEPROM phase of BOOT FSM.	RW	0
		x0 – Do not execute EEPROM phase of BOOT FSM		
Start BOOT FSM	8	x1 – Starts the BOOT FSM using the content of CHIP_MOD[9:11] to define which step is executed or skipped. This is a self clear register once the BOOT FSM has completed the operation. x0 – Do not start the BOOT FSM.	RW	0
RSVD	7:4	Reserved. Set to 0.	RV	0

Table 37 CHIP_MODE

Fulcrum Confidential

LED Mode	3	 1 – Invert LED data on the LED interface. 0 – Do not invert LED data on the LED interface. 	RW	0
LED Enable	2	 1 – Present LED signals on the LED interface. 0 – Disable the generation of LED signals 	RW	0
RSVD	1	Reserved. Set to 0.	RV	0
DFT Access	0	Grants access of the DFT functions to the control interfaces	RW	0
RSVD	31:14	Reserved. Set to 0.	RV	0

Table 38 CLK_MULT_1

Name	Bit	Description Type		Default
SPI Divider	15:8	The SPI EEPROM clock divider SPI clock = CPU Interface clock / (2*(SPI Div+1) Default value gives CPU clock speed divisor of 52.	RW	0x19
LED Freq	7:0	0x0 - LED clock = CPU Interface clock / 4 $0x10x7F - LED Clock = /(2^{15} * LED Div)$	RW	0x00
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 39 FRAME_TIME_OUT

Name	Bit	Description	Туре	Default
Frame Timer	27:0	Timer to determine whether a frame has been in the switch element for too long. Once the timer is reached the frame will be discarded.	RW	0x00F4 240
		x0 – turns off the feature		
		x000001 – x3FFFFF – Timer in increments of 2 ¹⁰ * CPU Interface cycle time.		
		x000001 – 15 uS		
		x00F4240 – 15 seconds		
		xFFFFFFF – 1 hour		
		Note: The values listed here by way of example assume a 66 MHz CPU Interface.		
RSVD	31:28	Reserved. Set to 0.	RV	0

Table 40 VITAL_PRODUCT_DATA

Name	Bit	Description	Туре	Default
Version	31:28	Version	RO	0x00
Part Number	27:12	Part Number – Fulcrum specific	RO	0xAE18
JTAG ID	11:1	JEDEC Manufacturer's ID for Fulcrum (4 bytes of continuation code and ID of 7'h15)	RO	0x215
CONST	0	1 bit constant alignment field	RO	1

Table 41 PLL_FH_CTRL

Name	Bit	Description	Туре	Default
Out Enable	15	Allows the PLL output to be driven out of the chip for debug purposes	RW	0
N Divider	14:11	N Parameter. See section 3.6.4. (Note: setting this parameter to 0 will cause the divider to be 16.)	RW	4
M Divider	10:4	M Parameter. See section 3.6.4. (Note: setting this parameter to 0 will cause the multiplier to be 128.)	RW	20
P Divider	3:2	P Parameter. See section 3.6.4. 0 = divide by 1 1 = divide by 2 2 = divide by 4 3 = divide by 8	RW	0
Disable	1	Power down the PLL	RW	1
Bypass	0	Bypass CPU_CLK through to the output of the PLL. CPU_CLK is the input to the PLL.	RW	0
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 42 PLL Configuration Examples

FH_REFCLK	М	Ν	Р	PLL_OUT
33MHZ	24	3	0	264MHZ
33MHZ	27	3	0	297MHZ
33MHZ	30	3	0	330MHZ
33MHZ	31	3	0	341MHZ
33MHZ	33	3	0	363MHZ

66MHZ	20	4	0	330MHZ
66MHZ	22	4	1	363MHZ

Table 43 PLL_FH_STAT

Name	Bit	Description	Туре	Default
Lock	0	PLL has achieved lock	RO	0
RSVD	31:1	Reserved. Set to 0.	RV	0

Table 44 PORT_CLK_SEL

Name	Bit	Description	Туре	Default
RefClkSel (n)	(n)	Selects one of the two low-jitter RefClks for port (n). b0 selects RCK[i][A] b1 selects RCK[i][B] The index [i] is the group number of the clocks available at port (n).	RW	0
RSVD	31:25, 0	Reserved. Set to 0.	RV	0

Note:

The physical clock inputs to the chip group the ports into 4 groups of 6 ports; each group shares the same two clock references. These groups are based on proximity. The following table specifies which ports are in which clock group:

GROUP	PORTS	REFCLK
1	1,3,5,7,9,11	RCK[1][A] RCK[1][B]
2	2,4,6,8,10,12	RCK[2][A] RCK[2][B]
3	13,15,17,19,21,23	RCK[3][A] RCK[3][B]
4	14,16,18,20,22,24	RCK[4][A] RCK[4][B]

5.4 Switch Configuration

5.4.1 Critical Events

Table 45INTERRUPT_DETECT

Name	Bit	Description	Туре	Default
PERR_INT	12	Parity error has been detected	RO	0
PORT_VLAN_INT_1	11	A VLAN egress boundary violation has occurred	RO	0
PORT_VLAN_INT_2	10	A VLAN ingress boundary violation has occurred	RO	0
PORT_MAC_SEC_INT	9	A security violation has occurred	RO	0

EPL_INT_DETECT	8	An Ethernet port has raised an interrupt	RO	0
RSVD	7:6	Reserved. Set to 0.	RV	0
MGR_INT	5	An interrupt has occurred in the Manager unit	RO	0
FC_INT	4	An interrupt has occurred in the Frame control	RO	0
RSVD	3	Reserved. Set to 0.	RV	0
TRIGGER_INT	2	An Interrupt has occurred in the Triggers	RO	0
LCI_INT	1	An Interrupt has occurred in the Logical CPU Interface	RO	0
RSVD	31:13, 0	Reserved. Set to 0.	RV	0

Note:

All unmasked interrupts in the interrupt detect register are "or-d" together to form the bus interrupt: **INT_N**.

Table 46 GLOBAL_EPL_INT_DETECT

Name	Bit	Description	Туре	Default
GLOBAL_INT_DET	24:1	Interrupt on Port[i] is indicated by bit[i]	RO	0
RSVD	0, 31:25	Reserved. Set to 0.	RV	0

Table 47 MGR_IP

Name	Bit	Description	Туре	Default
RSVD	6:5	Reserved. Set to 0	RV	0
Boot Done	4	Boot complete	RO	0
EEPROM Error	3	Error on SPI interface	CR	0
RSVD	2:0	Reserved. Set to 0.	RV	0
RSVD	31:7	Reserved. Set to 0.	RV	0

Table 48 MGR_IM

Name	Bit	Description	Туре	Default
Mask Interrupts	6:0	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt Note: EEPROM interrupts default to active so the CPU can be called in if there is an EEPROM error, without having to write this register.	RW	x7F
RSVD	31:7	Reserved. Set to 0.	RV	0

Table 49 FRAME_CTRL_IP

Name Bit	Description	Туре	Default]
----------	-------------	------	---------	---

Skip Learn	10	A learning event was skipped because there wasn't adequate time to complete the operation	CR	0
Skip source address lookup	9	A source address lookup was skipped because there wasn't adequate time to complete the operation (requires source address lookup mode=1 in MA_CFG_2)	CR	0
Frame Time Out	8	Frames have timed out from being in the fabric for too long.	CR	0
Parity Error	7	Indicate a parity error while processing a frame.	CR	0
CM Privilege drop	6	A frame was dropped because it would have exceeded the privileged watermark. This means the entire memory is full and is an equivalent condition to MACs overflowing.	CR	0
VID table parity error	5	A parity error has occurred in the VLAN ID table. Note: In the hardware the membership and spanning tree state are separated into two different tables. The parity information from both tables is combined in this interrupt.	CR	0
MAC address status buffer overflow	4	The 64-place status buffer overflowed and now the table is fatally out of synchronization with software	CR	0
MAC address full bin	3	A MAC address bin is full	CR	0
MAC address new entry	2	A new entry has been learned in the MAC address table	CR	0
MAC address Aged entry	1	An address has been aged out of the MAC address table	CR	0
MAC address table parity error	0	A parity error has occurred in the MAC address table	CR	0
RSVD	31:11	Reserved. Set to 0.	RV	0

Note:

The following interrupts actually occur in the switch element, but are reported in the FRAME_CTRL_IP register: Frame Time Out; Parity Error in the Scheduler

Table 50 FRAME_CTRL_IM

Name	Bit	Description	Туре	Default
Mask Interrupts	10:0	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	x7FF
RSVD	31:11	Reserved. Set to 0.	RV	0

Table 51 PERR_IP

Name	Bit	Description	Туре	Default
Parity Error	15:12	A fatal parity error has occurred from one of three sources of parity errors. (If the watchdog is enabled it will reboot the chip.)	CR	0
Parity Error	11:4	A parity error occurred in one of eight sources. The switch removed one memory segment from the free pool to recover from this error. It is recommended to reboot the device.	CR	0
Parity Error	3:0	A parity error has occurred in one of four sources. The switch recovered from this error.	CR	0
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 52 PERR_IM

Name	Bit	Description	Туре	Default
Mask Interrupts	15:0	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt Note: EEPROM interrupts default to active so the CPU can be called in if there is an EEPROM error, without having to write this register.	RW	xFFFF
RSVD	31:16	Reserved. Set to0.	RV	0

Table 53PERR_DEBUG

Name	Bit	Description	Туре	Default
Fatal Parity Error	23:16	Count of fatal parity errors	CR	0
Cumulative Parity Error	15:8	Count of cumulative parity errors	CR	0
Transient Parity Error	7:0	Count of transient parity errors	CR	0
RSVD	31:24	Reserved. Set to 0.	RV	0

Table 54 PORT_VLAN_IP_1

Name	Bit	Description	Туре	Default
VLAN egress BV (port n)	24:1 (port n)	A known unicast address couldn't be forwarded to its destination because the egress port was not in its VLAN membership group, and VLAN unicast tunnel is off, or the destination address is not locked. This does not apply to	CR	0

Fulcrum Confidential

		standard VLAN flooding. The bit number corresponds to the port number of the port of the frame's ingress.		
RSVD	31:25,0	Reserved. Set to 0.	RV	0

Table 55 PORT_VLAN_IM_1

Name	Bit	Description	Туре	Default
Mask Interrupts	24:1	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	xFFFFFF
RSVD	31:25, 0	Reserved. Set to 0.	RV	0

Table 56 PORT_VLAN_IP_2

Name	Bit	Description	Туре	Default
VLAN Ingress BV (port n)	24:1 (port n)	Source port not a member for that VLAN ID.	CR	0
	. ,	The bit number corresponds to the port number of the port of the frame's ingress.		
RSVD	31:25,0	Reserved. Set to 0.	RV	0

Table 57 PORT_VLAN_IM_2

Name	Bit	Description	Туре	Default
Mask Interrupts	24:1	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	xFFFFFF
RSVD	31:25, 0	Reserved. Set to 0.	RV	0

Table 58 PORT_MAC_SEC_IP

Name	Bit	Description	Туре	Default
MAC Security violation (port n)	24:1 (port n)	A security violation occurred on this port. The bit number corresponds to the port number.	CR	0
RSVD	31:25,0	Reserved. Set to 0.	RV	0

Table 59 PORT_MAC_SEC_IM

Name	Bit	Description	Туре	Default
Mask Interrupts	24:1	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	xFFFFFF
RSVD	31:25, 0	Reserved. Set to 0.	RV	0

Table 60 TRIGGER_IP

Name	Bit	Description	Туре	Default
Trigger [n]	n (15:0)	An interrupt has occurred on Trigger [n]	CR	0
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 61 TRIGGER_IM

Name	Bit	Description	Туре	Default
Mask Interrupts	15:0	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	xFFFF
RSVD	31:16	Reserved. Set to0.	RV	0

5.4.2 System Configuration

Table 62 SYS_CFG_1

Name	Bit	Description	Туре	Default
Broadcast disable	15	x1 – Discard broadcast frames x0 – Treat broadcast frames normally (see SYS_CFG_1[Broadcast Control]) for further details.	RW	0
Flood control multicast	14	If a multicast address is unknown on destination address look-up, it will be flooded unless this bit is set.	RW	0
Flood control unicast	13	If a unicast address is unknown on destination address look-up, it will be flooded unless this bit is set.	RW	0
RSVD	12:11	Reserved. Set to 0.	RV	0
Drop Pause	10	This bit only has an effect when the Ethernet Port Logic is streaming pause into the switch element. x0 – Frames with the MAC control address 01-80-c2-00-00-01 are treated as ordinary multicast. x1- Frames with the MAC control address 01-80-c2-00-00-01 are discarded.	RW	1
Remap ET SP15	9	 1 – Remap any frame for which the Ether-type = the programmed Ether-type trap to switch priority 15 0 – Do not do this priority remapping. This only applies if the trap is enabled. 	RW	0
Remap CPU SP15	8	 1 – Remap any frame for which the destination address = the programmable CPU MAC address to switch priority 15. 0 – Do not do this priority remapping. 	RW	0

		This only applies if the trap is enabled.		
Remap IEEE SP15	7	 1 – Remap any frame with IEEE reserved destination address, or IGMPv3 destination address to Switch Priority 15. 0 – Do not do this priority remapping. This only applies if the trap is enabled 	RW	1
Broadcast control	6	 1 – Send broadcast to the CPU port 0 – Do not send the broadcast to the CPU port A broadcast occurs when Destination address = xFFFFFFFFFFFFF 	RW	1
Trap 802.1x frames	5	1 – Trap frames with destination address = 0x0180C2000003. This may be used in connection with Ether-type trap set to 88-8E	RW	1
Trap IGMP v3 frames	4	 1 – IGMPv3 configuration frames will be forwarded to the CPU destination address = 0x01005E000001. 0 – IGMPv3 configuration frames are treated as regular multicast frames 	RW	1
Trap GARP frames	3	1 – GARP ports will be forwarded to the CPU 0 – GARP frames are treated as regular multicast frames Note: This includes both GMRP and GVRP. Destination address = 0x0180c2000020 and destination address = 0x0180C2000021	RW	1
Trap BPDU frames (Enable Spanning Tree)	2	 1 – BPDU ports will be forwarded to the CPU. Destination address = 0x0180C2000000. 0 – BPDU frames are treated as regular multicast frames 	RW	1
Trap LACP and Marker frames (Enable Link aggregation)	1	 1 – LACP and Marker frames will be forwarded to the CPU. Destination address = 0x0180C2000002. 0 – LACP and Marker frames will be treated as regular multicast frames. 	RW	1
Trap Other generic slow protocols	0	1 – Frames of all other IEEE reserved multicast addresses (not enumerated above) will be forwarded to the CPU.	RW	1

		Destination address = 0x0180C20000xy: where x==0 & y > 3, x==1, or x==2 & y > 1 0 – Frames of all other IEEE reserved multicast addresses (not enumerated above) will be treated normally.		
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 63 SYS_CFG_2

Name	Bit	Description	Туре	Default
Multiple Spanning Trees	3	1 – There is one spanning tree per VLAN	RW	0
		0 – There is one spanning tree shared by all of the VLANs		
Enable 802.1q	2	1 – Use the VLAN table,	RW	0
VLAN tagging		L2 packet look-up is by MAC address and VLAN.		
		All frames have a VID association. (Either from tag that is already there on Ingress or by port association).		
		0 – Ignore tags.		
		The tag (or lack of a tag) of the outgoing frame is the same as when the frame Ingressed.		
		There is no notion of a VID in this context. However, the port- based VLAN membership list is stored in the VID table, indexed by port instead of VID.		
VLAN multicast Tunnel	1	 Multicast bit mask is not "anded" with VLAN mask. In IVL mode, the FID address is made "zero" for multicast if the tunnel is on. Multicast bit mask is "anded" with VLAN mask as normal. 	RW	0
VLAN unicast Tunnel	0	 1 – Unicast bit mask is not "anded" with VLAN membership if the entry is locked in the table. Note: This feature is only efficient in shared learning mode. 	RW	0
RSVD	31:4	Reserved. Set to 0.	RV	0

Table 64 SYS_CFG_3

Name	Bit	Description	Туре	Default
CPU MAC address MSB	15:0	Top 16 bits of the CPU MAC address	RW	x0000
RSVD	31:16	Reserved. Set to 0.	RV	0

Note:

Table 65 SYS_CFG_4

Name	Bit	Description	Туре	Default
CPU MAC address LSB	31:0	Bottom 32 bits of the CPU MAC address	RW	x00000 000

If a frame has a destination address = CPU MAC address, then that packet is sent to the CPU regardless of VLAN association.

Table 66 SYS_CFG_6

Name	Bit	Description	Туре	Default
Ether-type Trap on	16	1 - Enable Ether-type trap 0 – Disable Ether-type trap	RW	0
Ether-type value	15:0	Value of 2 byte ether-type field to be trapped. Any packet with this field will be sent to the CPU instead of forwarded normally. Like IEEE group addresses, this trap takes precedence over VLAN and MAC security. Default is set to type for IEEE 802.1x.	RW	x888E
RSVD	31:17	Reserved. Set to 0.	RV	0

Table 67 SYS_CFG_7

Name	Bit	Description	Туре	Default
Disable Aging	31	x1 – Do not age the table x0 – Age the table with the age time specified below.	RW	0x1
Age Time	30:0	MAC table entry age time, t, in terms of CPU clock periods. Table aging proceeds one entry every 2t periods. The 16K table requires 16K*t*2 periods to complete the aging process. Example: CPU clock 50 MHz (period = 20 ns) Timer set to 0x7530 (decimal 30,000) Entries are aged one per 1.2 ms (30,000*2*20 ns) Entire table is aging process occurs in 19.2 sec. Note: This is a best case calculation. Other activity on the bus takes precedence over aging requests, so actual age timing may be somewhat slower. 0x0 – RSVD	RW	0x7530

5.4.3 Per port Configuration

Table 68 PORT_CFG_1 [1..24]

Note:

PORT_CFG_1 [0] of the array is not specified. This address corresponds to the CPU port. It is a RSVD address.

Name	Bit	Description	Туре	Default
Multiple VLAN Tagging	25	 x1 – Treat the incoming frame as if it is untagged for the purpose of VLAN association and tagging. The frame is associated with the per port VLAN default. If the frame leaves the switch tagged in 802.1Q mode, it gets an additional VLAN tag. If the frames leaves the switch untagged in 802.1Q mode, then any original VLAN is preserved, but this tag is not added. x0 – Single tag only. All of the 	RW	0
		VLAN rules pertain to the traditional VLAN tag only.		
Remap Security SP15	24	x1 – Remap a security violation frame that is trapped and sent to the CPU to Switch Priority 15 x0 – Do not do this priority	RW	0
	00	remapping		0
Security CFG	23	 x0 – Do not trap the frame that caused a security violation. In which case the frame is simply discarded. x1 –Trap the frame and send it to the CPU. Note: Security violations are never 	RW	0
		forwarded to non-CPU Ethernet ports.		
MAC security enable	22:21	x0 – No security checks x1 – Unknown source MAC address is considered a security violation x2 – Unknown source MAC address or a source MAC association with another port is a security violation. x3 - reserved Note: Port security is not VLAN aware.	RW	0
Learning Enable	20	 1 – Source addresses from this port will be learned. 0 - Source addresses from this port will not be learned. 	RW	1
VLAN ingress port precedence	19	0 – Tag untagged frames only 1 – Overwrite all frames with port defaults (VID, default priority) Note: Assumes the "Multiple VLAN	RW	0

		Tagging" bit is not set.		
Filter ingress VLAN boundary violations	18	 If the source port does not match the VLAN membership, it is a VLAN boundary violation and the packet is dropped. Such packet is not dropped. 	RW	0
Drop untagged frames	17	 1 – Filter frames that do not Ingress with a VLAN tag. 0 – Accept frames that do not Ingress with a VLAN tag. Note: If the "Multiple VLAN Tagging" bit is set, then this filter will result in a discard if the incoming frame does not have its first level tag. That is, the ethertype does not equal VLAN. If Ethertype = VLAN but VLAN-ID = 0, the frame is considered untagged. 	RW	0
Drop tagged frames	16	 1 – Filter frames that ingress with a VLAN tag (Ethertype = VLAN) and (VLAN-ID > 0) 0 – Do not drop tagged frames. 	RW	0
Default VLAN Priority	15:13	Default VLAN priority.	RW	x0
RSVD	12	Reserved. Set to 0.	RW	0
Default VID	0:11	Default VLAN ID for this port.	RW	x001
RSVD	31:26	Reserved. Set to 0.	RV	0

See Figure 9-4 of IEEE 802.3Q-2003 (page 85) for frame format of the 2 byte VLAN tag.

Note: The VLAN priority is associated with the frame logically, before any other priority based calculation, inclusive of priority mapping, RX priority counters, etc.

Table 69 PORT_CFG_2 [1..24]

Name	Bit	Description	Туре	Default
Source Mask	24:0	A vector for each port i, a bit for each port j, 1 – Port i may send packets to port j. 0 – Port I may not send packets to port j. This feature is used to: Prevent multicast and broadcast traffic from going out the port it came in on,	RW	x1FFFFFF
		Cut loops in statically-configured networks, Prevent link aggregates from receiving multiple copies of multicast and broadcast traffic. This mask is always "anded" with the destination mask. It is not		

		enabled, if the mask were set to all ones, it would have no effect. There is no need to have a default setting of bit i on port i = 0 to prevent loops. The reflect bit in the VLAN table automatically creates this effect.		
RSVD	31:25	Reserved. Set to 0.	RV	0

Note: The Port Based VLAN registers are also viewed as a general port membership list. This is used for other features in the device besides legacy non-802.3q VLANs. The features are:

Port-based VLAN

Link Aggregation

Preventing Loop back

Note: If ingress port frame reflection is enabled, and the per-VLAN frame reflection bit is set for the VLAN associated with a given frame, then a frame may egress its ingress port, if either:

The frame is flooded for a DLF

The egress port is the forwarding port as determined by the MAC table

The frame is a broadcast frame

Note: There is no requirement for a static table entry. This rule supercedes PORT_CFG_2 [1..24]. x0 – a frame's egress port may not also be its ingress port.

5.4.4 Non-IEEE 802.3 Header info

Non IEEE-compliant header support comes from two features:

- The location of the 16-byte header can be offset in the global per port settings from the start of packet by any arbitrary byte amount up to 256bytes from the start of the header.
- A bit mask can be applied to any bits in the 16-byte header to generalize the standard source, destination, and type/VLAN fields that would normally exist.

Table 70 HEADER_MASK [0..3]

Name	Bit	Description	Туре	Default
SWM	31:0	Bit mask for sliding window mask.	RW	xFFFFF FFF

Note: These registers do not modify the packet itself.

5.4.5 Logical CPU Interface Registers

Table 71 LCI_CFG

Name	Bit	Description	Туре	Default
RSVD	16:11	Reserved. Set to 0.	RV	0
RSVD	10:5	Reserved. Set to 0.	RV	0
Host Padding	4	1 – Padding for frames sent from the switch to the host is to 64 bit boundaries.	RW	0
		0 – Padding for frames sent from the switch to the host is to 32 bit		

		boundaries. Note: Padding is not required when sending frames from the host to the switch. This feature is to increase compatibility with off-chip DMA engines.		
Endianess	3	0 – CPU is little Endian. 1 – CPU is big Endian.	RW	0
Tx Compute CRC	2	 1- Computes the CRC and overwrites the last 4 bytes of the packet with the new CRC. 0 – Does not compute the CRC and relies on what the CPU has written in the CRC field. 	RW	1
RSVD	1		RV	0
Rx Enable	0	 1 – Receive packets in the LCI. 0 – Discard all packets in the LCI. Must be set to receive packets into the receive buffer. 	RW	0
RSVD	31:17	Reserved. Set to 0.	RV	0

Table 72 LCI_STATUS

Name	Bit	Description	Туре	Default
RSVD	4	Reserved. Set to 0.	RV	0
RSVD	3	Reserved. Set to 0.	RV	0
RX EOT	2	1 – Signals end of frame transmission. This bit does not raise an interrupt but it is redundant with the RX end of frame bit in the LCI_IP register. This is done so that software only needs to read one register.	CR	0
RX Ready	1	 1 – Frame data is in the receive FIFO. 0 – There is no frame data in the receive FIFO. The transition from 0 to 1 occurs on a new frame. The transition from 1 to 0 occurs at the end of a frame. 	RO	0
TX Ready	0	This signal is equivalent to the inverse of Pause. The pause watermarks exist for the switch port, and when pause is triggered this status bit changes to 0. When the port is "unpaused" this bit changes back to 0. Note: it is not anticipated under normal operation, that the CPU port will ever be paused.	RO	1
RSVD	31:5	Reserved. Set to 0.	RV	0

Notes:

(1) RX Ready itself does not signal new frame or end of frame. Rx Ready could stay high over multiple packets.

(2) The TX interrupt is equivalent to a change in state of TX Ready.

Table 73 LCI_RX_FIFO

Name	Bit	Description	Default	
RxData	31:0	Rx Data channel. All incoming packet data appears on this channel in FIFO order. At the end of the packet the LCI_RX_FRAME_STATUS register data is appended.	RO	0

Table 74 LCI_TX_FIFO

Name	Bit	Description	Туре	Default
TxData	31:0	Tx Data channel. The CPU or DMA bridge writes exclusively to this register during packet transmission. See LCI functional description for the bit format and "in-band" control fields.	RW	0

Note:

See LCI description for treatment of endianness. Endianness only applies to RxData and TxData.

Table 75 LCI_IP

Name	Bit	Description	Туре	Default
LCI_TX Overrun	7	The frame being sent from the manager to the switch was corrupted because the switch did not have room to store the frame.	CR	0
LCI_RX Underflow	6	The frame being sent to the manager under-flowed because all the frame data was not available in the switch quickly enough to keep up with the CPU interface	CR	0
LCI_RX Tail error	5	The frame being sent from the switch to the manager had the error bit set in the fabric	CR	0
LCI_RX Internal Error	4	There was an error on the frame being transmitted from the switch to the manager, however when it entered the switch from the network it was error free. So the switch generated the error.	CR	0
LCI_RX Error	3	There was an error on the frame being transmitted from the switch to the manager	CR	0
LCI_RX End	2	The switch is done transmitting the packet to the Manager.	CR	0
LCI_RX Request	1	A new packet has arrived for processing. That is, a frame from Ethernet port N > 0 headed for Port 0, has arrived in the switch and needs to be read from the LCI.	CR	0
TXRDY Transition	0	Either of the following two	CR	0

		conditions:		
		Change of pause state. The switch had been able to accept new frames from the manager and it no longer can, or vice versa, from a change in pause state.		
		From an overflow in the RX buffer (switch port).		
RSVD	31:8	Reserved. Set to 0.	RV	0

Note: By convention:

LCI_RX means frames going to the CPU from the switch which have come from the network.

LCI_TX means frames going from the CPU to the switch on their way to the network.

Table 76 LCI_IM

Name	Bit	Description	Туре	Default
Mask Interrupts	7:0	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	xFF
RSVD	31:8	Reserved. Set to 0.	RV	0

5.5 Bridge Registers

5.5.1 Switch Control Tables

5.5.1.1 MAC Address Table

Table 77MAC Address Table

	94:70	69	68	67	66:62	6150	492	1	0
Address	Dest. Mask	Age	Lock	Valid	TRIG-ID	FID	MAC Address	RSVD	Parity
0									
16,383									

Address table Fields

- Destination Mask a bit mask of the destination ports to which this address corresponds.
- TRIG-ID Each trigger has a TRIG-ID and a defined in TRIGGER_CFG. If the trigger calls for a single MAC address match, then of the 2 MAC address lookups, there must be one match for that trigger. If the trigger calls for a source address and destination address match, then both lookups must resolve to the same TRIG-ID as the trigger lookups.
- Parity memory protection. A parity error is assumed to be a soft error in the table and is a reason to Reset the chip.

- Age The age timer. 1 The entry is new, 0 The entry is old. Every time the table is accessed the bit is refreshed. If the age clock comes around between refreshes, it purges the table of the entry.
- Valid The entry is valid.
- Lock The entry may not be aged out of the table. It can only be removed from the CPU.
- FID Learning Group. In shared spanning tree mode, FID = 0. In multiple spanning tree mode, FID = VID.
- MA Address MAC address.
- **Note:** (1) The table is searched by MAC address and FID. That is, the same MAC address may exist once per VLAN in the table in multiple spanning tree mode. On a VLAN boundary violation, an address is not learned.
 - (2) On a parity error, the line is considered invalid.
 - (3) On power-up, all bits are zero by default.

(4) MAC entries take 3 32-bit words to completely specify. The entries are aligned to 128 bit boundaries in address space, that is, one entry every four addresses.

Table 78 MA_TABLE_CFG

Name	Bit	Description	Туре	Default
Hash Rotation	2:1	The hash function produces a 16 bit value. The hash address is only 12 bits. Which 4 bits are excluded is programmable. 0x0 – Bits 15:12 are not used. 0x1 – Bits 11:8 are not used. 0x2 – Bits 7:4 are not used. 0x3 – Bits 3:0 are not used.	RW	0x3
Source address lookup mode	0	 1 – The source address lookup is only performed while the frame processor is ahead of the requests for destination address lookups. 0 – The source address lookup is performed on every frame. Note: This mode is incompatible with port security. It is used for achieving high event rate to support forwarding small packets at line rate. Normally, it should be set to 0. 	RW	0
RSVD	31:3	Reserved. Set to 0.	RV	0

Table 79 MA_TABLE_STATUS_1

Name	Bit	Description	Туре	Default
Туре	18:16	0x0 – Empty (No new entry since last read). 0x1 - Entry was learned. 0x2 – Entry was aged. 0x3 – Entry was a parity error. 0x4-0x7 – RSVD.	CR	0
Last learned/aged	15:0	Index of the most recently modified	CR	0

Fulcrum Confidential

entry		entry in the MAC address table.		
RSVD	31:19	Reserved. Set to 0	RV	0

Note: There is a 64 place FIFO behind this. Once the value of the data is read, the register is cleared. If the switch has to place more than 64 changes in the FIFO ahead of the CPU, the FIFO fills up, and the reports of any subsequent table changes will be discarded and the "MA Status Buffer Overflow" interrupt in FRAME_CTRL_IP will be set. This implies that the MAC address table in the switch and the MAC address table in the host software are out of synchronization. The CPU now needs to re-read the entire table, to make the software image of the table consistent.

Table 80 MA_TABLE_STATUS_2

Name	Bit	Description	Туре	Default
Bin full count	31:16	Count of times an address was not learned from full bin.	CR	0
Bin Full Hash	11:0	Hash value of last bin that was full.	RO	0
RSVD	15:12	Reserved. Set to 0.	RV	0

Table 81 MA_TABLE_STATUS_3

Name	Bit	Description	Туре	Default
Skip LRN count	31:16	Count of the number of times a learning event was skipped because it is best effort and there wasn't time.	CR	0
Skip source address count	15:0	Count the number of times a source address lookup or learning event was not done because it is best effort and there wasn't time. (Learning events are always best- effort, source address lookup is only best-effort if the mode bit is set).	CR	0

Table 82 VLAN ID Table

	63:14	13	12:8	7:2	1	0
Address	Port Membership and Tag	RSVD	TRIG ID	VCNT	Refle ct	Parity
0						
4094						

VLAN Table Fields

• VCNT – Check this index, and if VCNT < 32, then VCNT is the index into the counters for this VLAN to count octets, unicast frames, non-unicast frames in the VLAN.

Parity – If there is a parity error in the VLAN table it is grounds for resetting the chip.

Reflect – If this bit is set and PORT_CFG_1[Ingress Port Reflection Enable] then the frame may be sent out the port it came in on, subject to the description in PORT_CFG_1.

TRIG ID – See section on monitoring.

Port Membership and Spanning tree state. 2 bits per port flood map (38 bits).

- b0 Tag bit
 - 0 Frame leaves untagged
 - 1 Frame leaves tagged
- b1 Membership bit
 - 0 Port is not a member of this VLAN
 - 1 Port is a member of this VLAN
- Port membership includes CPU.

On power-up all bits are zero by default.

In port-based VLAN there is no tagging, however this table is used to store the state of the membership lists. In that case the table is indexed by the port the traffic came in on, instead of the VLAN ID. The tag bit is ignored, as the frame always exits the switch unmodified. The membership bit indicates which ports can receive frames from the source port.

5.5.1.2 Forwarding Information Database (FID) Table

Each FID entry corresponds to a unique spanning tree.

Table 83: FID_TABLE (Spanning Tree State Table)

	63:50	49:2	1	0
Address	RSVD	Spanning Tree State	RSVD	Parity
0				
4094				

Two bits of spanning tree state per port. This facilitates multiple spanning tree learning.

- Disabled All packets are discarded in this state. (b1b0=00)
- Listening All packets but BPDUs are discarded in this state. (b1b0=01)
- Learning All packets are discarded, however they are subject to Source lookups and learning. (b1b0=10)
- Fowarding Port behaves normally. (b1b0=11)

Spanning Tree State does not include CPU (Port 0).

If the VLAN is not valid, that state is encoded by its membership group being zero. Then a Frame with that VID will be an Ingress and Egress boundary violation. Any VLAN boundary violation will lead to the frame not being learned. The frame may be discarded per security setting.

On Power up, all bits are zero by default.

5.5.2 Port Trunk Registers (Link-Aggregation)

Table 84TRUNK_PORT_MAP [1..24]

Name	Bit	Description	Туре	Default
Is mapped	4	1 – Port i is a member of the trunk group specified in LAG.	RW	0
		0 – Port i is not a member of any		

		trunk group.		
LAG	3:0	Port i is a member of trunk group # 0x0-0xB are the 12 defined trunk groups. 0xC-0xF are reserved.	RW	0
RSVD	31:5	Reserved. Set to 0	RV	0

Address of TRUNK_PORT_MAP[0] is RSVD.

There are 12 supported LAGs.

Port 0 is special and may not be configured into an LAG.

Table 85 TRUNK_GROUP_1 [0..11]

Name	Bit	Description	Туре	Default
P6	29:25	Sixth port in the trunk group.	RW	0
P5	24:20	Fifth port in the trunk group.	RW	0
P4	19:15	Fourth port in the trunk group.	RW	0
P3	14:10	Third port in the trunk group.	RW	0
P2	9:5	Second port in the trunk group.	RW	0
P1	4:0	First port in the trunk group.	RW	0
RSVD	31:30	Reserved. Set to 0.	RV	0

Table 86 TRUNK_GROUP_2 [0..11]

Name	Bit	Description	Туре	Default
P12	29:25	Twelfth in the trunk group.	RW	0
P11	24:20	Eleventh port in the trunk group.	RW	0
P10	19:15	Tenth port in the trunk group.	RW	0
P9	14:10	Ninth port in the trunk group.	RW	0
P8	9:5	Eighth port in the trunk group.	RW	0
P7	4:0	Seventh port in the trunk group.	RW	0
RSVD	31:30	Reserved. Set to 0.	RV	0

Table 87 TRUNK_GROUP_3 [0..11]

Name	Bit	Description	Туре	Default
Group Length	4:0	Number of ports in the trunk group.	RW	0
RSVD	31:5	Reserved. Set to 0.	RV	0

The trunk is valid if the length is set to ≥ 1 .

It is illegal, but not checked in the switch hardware for the following conditions, which will result in undefined behavior:

- A port may not be a member of more than one trunk group.
- The CPU port may not be in any trunk group.

Table 88 TRUNK_CANONICAL [1..24]

Name	Bit	Description	Туре	Default

Canonical Port	4:0	The physical port i maps to the canonical port. Valid values are 1 – 24.	RW	"I" equal to port number
RSVD	31:5	Reserved. Set to 0.	RV	0

The address of TRUNK_CANONICAL[0] is RSVD. Port 0 is not mapped.

Note: The ports in the MAC table are considered canonical and to get a physical port, this is the mapping. Thus to observe a frame coming out a statically mapped physical, the MAC address table must agree with the TRUNK_CANONICAL register.

Table 89 TRUNK_HASH_MASK

Name	Bit	Description	Туре	Default
Force Symmetric Hash	6	0x0 – symmetric hash not enabled. 0x1 – The hash function will give the same result for: DA=MAC #1 and or SA=MAC #2 DA=MAC #2 and or SA=MAC #1 When Force Symmetric Hash is applied, the actual value of "Include DA" and "Include SA" are ignored and treated as true. The values of "Include VLAN-ID," and "Include VLAN-Pri" may be true or false, and should always result in preserving the symmetry. "Include Type and Source" may not be set to 0x3, or symmetry will be broken. Note: This feature is used for Fat tree topologies where it is desired for the distribution function to resolve to the same uplink port (chip) for both sides of a conversation.	RW	0
Include VLAN-PRI	5	0x1 Include VLAN PRI. Note: This does not include the CFI bit. (The field is a total of 3 bits)	RW	1
Include VLAN-ID	4	0x1 Include VLAN ID. (The field is 12 bits)	RW	1
Include Type and Source	3:2	0x0 Do not include the Type or Source field. 0x1 Include the Type and not the Source port. However if the Type < 0x600 then set Type to 0 (This prevents hashing on length) 0x2 Include the Source Port, but do not include the Type. 0x3 RSVD.	RW	0
Include SA	1	Include in the MASK the source address field (bytes 11:6)	RW	1
Include DA	0	Include in the MASK the destination address field (bytes 5:0)	RW	1

	RSVD	31:7	Reserved. Set to 0	RV	0	
--	------	------	--------------------	----	---	--

Note: For a description of the type field, see IEEE 802.3-2002 page 40.

5.5.3 Filtering and Monitoring

Table 90TRIGGER_CFG [0..15]

Name	Bit	Description	Туре	Default
MAC ID	31:28	TRIG ID for look-up. If the TRIG ID in this trigger [n] matches the TRIG ID in the MAC table or VID table, then the MAC and VLAN rules are checked for the trigger [n]. This applies to source and destination lookups and for VLAN match.	RW	0
Triggered Switch Priority	27:24	New switch priority associated with the frame when priority association actions are selected.	RW	0
Mirror Port	23:19	Port number of Mirror or redirect port.	RW	0x0 (CPU)
Action	18:16	 0x0 – Forward Normally 0x1 – Redirect (send to mirror port only) 0x2 – Mirror (send to output port and mirror port) 0x3 – Discard. 0x4 – Forward normally and associate the frame with the Triggered Switch Priority 0x5 – Redirect and associate the frame with the Triggered Switch Priority 0x6 – Mirror and associate the frame with the Triggered Switch Priority. 0x7 – Reserved. Note: these actions are mutually exclusive. Note: If the trigger fires, the trigger action is taken on the frame. The first trigger to fire in the precedence order of the trigger number 015, is the only trigger taken. There are counts for all triggers. 	RW	0
RSVD	15:12	Reserved. Set to 0.	RV	0
Any one MAC address match	11	Requires either the source address or the destination address to match, or both.	RW	0
Priority	10	Require frame to have a switch priority match.	RW	0
Multicast	9	Require frame to be multicast.	RW	0
Broadcast	8	Require frame to be broadcast.	RW	0

Unicast	7	Require frame to be unicast.	RW	0
VLAN	6	Require a VLAN trigger match.	RW	0
Destination Port	5	Require a destination port mask match.	RW	0
Source Port	4	Require a source port mask match.	RW	0
Destination MAC miss	3	Require a destination MAC table miss.	RW	0
Destination MAC	2	Require a destination MAC trigger match.	RW	0
Source MAC miss	1	Require a source MAC table miss.	RW	1
Source MAC	0	Require a source MAC table match.	RW	1

Note: The default value of source MAC address hit and a source MAC address miss effectively disables the triggers, which is the default state.

Table 91 TRIGGER_PRI [0..15]

Name	Bit	Description	Туре	Default
Priority Mask	15:0	Switch priority mask for this trigger.	RW	0
RSVD	31:19	Reserved. Set to 0.	RV	0

Table 92 TRIGGER_RX [0..15]

Name	Bit	Description	Туре	Default
Source Port Mask	24:1	Source port mask for this trigger.	RW	0
RSVD	31:25, 0	Reserved. Set to 0.	RV	0

Table 93 TRIGGER_TX [0..15]

Name	Bit	Description	Туре	Default
Destination Port Mask	24:1	Source port mask for this trigger.	RW	0
RSVD	31:25, 0	Reserved. Set to 0.	RV	0

5.6 Congestion Management

Any register in congestion management may be changed during device operation. This should not result in the corruption of any frames.

All addresses are offset by BASE.

BASE = 0x30E00 (subject to change in the final data sheet).

5.6.1 Priority Mapping

Note:

Priority regeneration registers are located in the MAC section. That is, switch to Egress tag priority mapping. All other priority mappings are in the following registers. They are:

RX priority to switch priority

Switch priority to WRED priority

Switch priority to scheduling priority

Table 94 RX_PRI_MAP [0..24]

Name	Bit	Description	Туре	Default
Pri7	31:28	Map ingress priority 7 to switch priority	RW	0x7
Pri6	27:24	Map ingress priority 6 to switch priority	RW	0x6
Pri5	23:20	Map ingress priority 5 to switch priority	RW	0x5
Pri4	19:16	Map ingress priority 4 to switch priority	RW	0x4
Pri3	15:12	Map ingress priority 3 to switch Ppriority	RW	0x3
Pri2	11:8	Map ingress priority 2 to switch priority	RW	0x2
Pri1	7:4	Map ingress priority 1 to switch priority	RW	0x1
Pri0	3:0	Map ingress priority 0 to switch priority	RW	0x0

Table 95 CM_PRI_MAP_1

Name	Bit	Description	Туре	Default
Pri7	31:28	Map switch priority 7 to WRED priority	RW	0xD
Pri6	27:24	Map switch priority 6 to WRED priority	RW	0xD
Pri5	23:20	Map switch priority 5 to WRED priority	RW	0xD
Pri4	19:16	Map switch priority 4 to WRED priority	RW	0xD
Pri3	15:12	Map switch priority 3 to WRED priority	RW	0xD
Pri2	11:8	Map switch priority 2 to WRED priority	RW	0xD
Pri1	7:4	Map switch priority 1 to WRED priority	RW	0xD
Pri0	3:0	Map switch priority 0 to WRED priority	RW	0xD

Table 96 CM_PRI_MAP_2

Name	Bit	Description	Туре	Default
Pri15	31:28	Map switch priority 15 to WRED priority	RW	0xD
Pri14	27:24	Map switch priority 14 to WRED priority	RW	0xD
Pri13	23:20	Map switch priority 13 to WRED priority	RW	0xD
Pri12	19:16	Map switch priority 12 to WRED priority	RW	0xD

Pri11	15:12	Map switch priority 11 to WRED priority	RW	0xD
Pri10	11:8	Map switch priority 10 to WRED priority	RW	0xD
Pri9	7:4	Map switch priority 9 to WRED priority	RW	0xD
Pri8	3:0	Map switch priority 8 to WRED priority	RW	0xD

Table 97 SCHED_PRI_MAP

Name	Bit	Description	Туре	Default
Pri15	31:30	Map switch priority 15 to scheduling priority	RW	0x3
Pri14	29:28	Map switch priority 14 to scheduling priority	RW	0x3
Pri13	27:26	Map switch priority 13 to scheduling priority	RW	0x2
Pri12	25:24	Map switch priority 12 to scheduling priority	RW	0x2
Pri11	23:22	Map switch priority 11 to scheduling priority	RW	0x1
Pri10	21:20	Map switch priority 10 to scheduling priority	RW	0x0
Pri9	19:18	Map switch priority 9 to scheduling priority	RW	0x0
Pri8	17:16	Map switch priority 8 to scheduling priority	RW	0x1
Pri7	15:14	Map switch priority 7 to scheduling priority	RW	0x3
Pri6	13:12	Map switch priority 6 to scheduling priority	RW	0x3
Pri5	11:10	Map switch priority 5 to scheduling priority	RW	0x2
Pri4	9:8	Map switch priority 4 to scheduling priority	RW	0x2
Pri3	7:6	Map switch priority 3 to scheduling priority	RW	0x1
Pri2	5:4	Map switch priority 2 to scheduling priority	RW	0x0
Pri1	3:2	Map switch priority 1 to scheduling priority	RW	0x0
Pri0	1:0	Map switch priority 0 to scheduling priority	RW	0x1

5.6.2 Queue Management – WRED

The WRED algorithm requires a seed to configure the random number generator.

Table 98 LFSR_CFG

Name Bit Description Type Default

Seed	30:0	Random seed.	RW	0
RSVD	31	Reserved. Set to 0.	RV	0

Note: The degenerate case of the random seed is x7FFFFFFF.

Table 99 QUEUE_CFG_1 [0..24]

Name	Bit	Description	Туре	Default
TX Shared WM – WRED	25:16	TX queue size, based on 1024 byte values. For Switch PRI != 15, frames are dropped 100% at this watermark.	RW	0x0FF
RX Shared WM - WRED	9:0	RX queue size, based on 1024 byte values. For Switch PRI != 15 frames are dropped 100% at this watermark.	RW	0x0FF
RSVD	31:26, 15:10	Reserved. Set to 0.	RW	0

The RX shared watermark and TX shared watermark default to 255 kB, or about 25% of the switch resources. These are "hog watermarks," protecting the switch from any one port needing too much of the switch resources. This arises during congestion.

Table 100 QUEUE_CFG_2 [0..24]

Name	Bit	Description	Туре	Default
RX Private CFG	15	 b1 – Discard frames that fail the TX shared check, even if the RX port associated with that frame has not exceeded its RX private watermark. b0 – Only discard frames that exceed both the TX shared and RX private watermarks. 	RW	0
RX Private WM	9:0	RX queue size, based on 1024 byte values. This memory is protected from congestion management for unicast frames.	RW	0x10
RSVD	31:16, 14:10	Reserved. Set to 0.	RW	0

The RX private watermark default to 16 kB (0x10), the total amount of private memory is 400 kB for 24 ports, or about 38% of the memory. 16k is chosen to guarantee a jumbo packet may be received on an empty port, irrespective of the congestion of the shared memory. RX private watermark does not enter into the calculation for flow control.

Table 101 QUEUE_CFG_3

Name	Bit	Description	Туре	Default
Switch Pri WM Select	2*i+1:2*i (15 ≥ i ≥ 0)	0x0 – All frames in this switch priority are checked against the low global watermark for WRED.	RW	0x1
		0x1 – All multicast and broadcast frames in this switch priority are checked against the low global watermark for WRED, but all unicast frames in this switch priority		

are checked against the high global watermark	
0x2 – All frames in this switch priority are check against the high global watermark for WRED	
0x3 – All frames in this switch priority are checked against the privileged watermark only (no WRED).	

Table 102 QUEUE_CFG_4

Name	Bit	Description	Туре	Default
RSVD	31:28	Reserved. Set to 0.	RV	0
Global High Watermark	27:16	Global high watermark based on 1024 byte values. If the frame matches a type in QUEUE_CFG_3 configured to be checked against the high watermark, then the WRED line for that frame intersects this watermark at 100% drop probability.	RW	0x21C
RSVD	15	Reserved. Set to 0.	RV	0
RSVD	14:12	Reserved. Set to 0.	RV	0
Global low Watermark	11:0	Global low watermark based on 1024 byte values. If the frame matches a type in QUEUE_CFG_3 configured to be checked against the low watermark, then the WRED line for that frame intersects this watermark at 100% drop probability.	RW	0x21C

The low global watermark defaults to leaving about 15% of the memory empty for high priority traffic assuming 16KB RX private FIFOs. The calculation is:

0.85 * {1024 kB (total memory) -
$$\sum_{i}$$
 RX Private(i) } = 540 kB (0x21C).

Table 103 QUEUE_CFG_5

This will become a reserved register. It is a fail safe watermark to keep the switch from overflowing the MACs, and is used for testing purposes only. This watermark does not take priority into account.

```
Note:
```

The trapped protocol packets, IEEE reserved multicast, are only dropped according to this watermark.

Name	Bit	Description	Туре	Default
Global WM - privileged	11:0	Global queue size, based on 1024 byte values. All frames are dropped 100% at this watermark.	RW	0x3D0
RSVD	31:12	Reserved. Set to 0.	RW	0

Table 104 STREAM_STATUS_1 [0..24]

Name Bit Description Type Default

TX Queue Status	27:16	Number of 1024 byte segments that are occupied in this TX Queue.	RO	0
RX Queue Status	11:0	Number of 1024 byte segments that are occupied in this RX Queue.	RO	0
RSVD	31:28, 15:12	Reserved. Set to 0.	RV	0

Table 105 STREAM_STATUS_2

Name	Bit	Description	Туре	Default
Global Shared Queue Status	27:16	Number of 1024 byte segments that are in the shared portion of the memory. That is, the total memory segment usage minus the segments in the private RX queues.	RO	0
Global Queue Status	11:0	Number of 1024 byte segments that are occupied in the stream memory. Total segments.	RO	0
RSVD	31:28, 15:12	Reserved. Set to 0.	RV	0

Table 106 EGRESS_SCHEDULE_1 [0..24]

Name	Bit	Description	Туре	Default
WRR Ports	3:2	Number of ESPQ in strict priority mode, counted from the highest priority ESPQ downward. 0x3 – All queues are WRR. 0x2 – The lowest 3 priority queues are WRR. 0x1 – The lowest 2 priority queues are WRR. 0x0 – All queues are strict priority. Any queues which are not WRR are strict priority. If they are weighted round robin, then the service order and weights are used to determine the scheduling.	RW	0
Service mode	1:0	This only applies to the WRR mode. 0x0 – Priority Round Robin. 0x1 – Reserved. 0x2 – Pure Round Robin. 0x3 – RSVD.	RW	0
RSVD	31:4	Reserved. Set to 0.	RV	0

Table 107 EGRESS_SCHEDULE_2 [0..24]

Name	Bit	Description	Туре	Default
Weight Queue 3	31:24	0x01-0xFF - Number of packets per turn in Queue 3.	RW	x0F
		0x00 - Illegal value, undefined		

		behavior.		
Weight Queue 2	23:16	0x01-0xFF - Number of packets per turn in Queue 2. 0x00 - Illegal value, undefined behavior.	RW	x07
Weight Queue 1	15:8	0x01-0xFF - Number of packets per turn in Queue 1. 0x00 - Illegal value, undefined behavior.	RW	x03
Weight Queue 0	7:0	0x01-0xFF - Number of packets per turn in Queue 0. 0x00 - Illegal value, undefined behavior.	RW	x01

Table 108 GLOBAL_PAUSE_WM [0..24]

Name	Bit	Description	Туре	Default
Pause OFF	27:16	The occupancy of 1024 byte segments in the global shared memory that ends the transmission of Pause frames out of the port. That is, not total memory, but sum of all ports above their RX private watermark.	RW	x120
Pause ON	11:0	The occupancy of 1024 byte segments in the global shared memory that initiates the transmission of Pause frames out of the port. In addition, the RX private watermark must be surpassed on any port before it will generate Pause messages.	RW	x144
RSVD	31:28, 15:12	Reserved. Set to 0.	RV	0

Table 109 RX_PAUSE_WM [0..24]

Name	Bit	Description	Туре	Default
Pause OFF	27:16	The occupancy of 1024 byte segments in the RX Status that ends the transmission of Pause frames out of the port.	RW	x0F5
Pause ON	11:0	The occupancy of 1024 byte segments in the RX Status that initiates the transmission of Pause frames out of the port.	RW	x0FF
RSVD	31:28, 15:12	Reserved. Set to 0.	RV	0

The RX pause watermark refers to the total RX status, not the portion of RX status that contributes to the shared memory (RX total - RX private). The defaults for RX_PAUSE_WM are calculated by:

Pause on : 25% of the memory

Pause off: Pause on - 16 kB

The following further restrictions apply to transmitting Pause Frames:

- Once the smaller Pause On watermark is achieved (global or per-port), that port will begin transmitting pause frames.
- Once both queues are below their pause off watermarks, that port will end transmitting pause frames.
- In order to send any pause frames, the per-port configuration of RX pause on must be set.

The CPU port (port 0) reports pause status in an out of band register, and the CPU may react to it anyway it pleases. There are no pause frames sent to the CPU interface.

5.6.3 Switch Latency

Table 110 SAF_MATRIX [0]

Name	Bit	Description	Туре	Default
RSVD	j	Reserved. Set to 1.	RW	1
RSVD	31:25	Reserved. Set to 1.	RV	1

Table 111 SAF_MATRIX [1..24]

The ports are grouped into the following banks:

The CPU, port 0, is always store-and-forward.

Name	Bit	Description	Туре	Default
SNF port-pair i-j	j (1:24)	Frames sent from Port i to Port j are store-and-forward.	RW	0
RSVD	0	Reserved. Set to 1.	RV	1
RSVD	31:25	Reserved. Set to 1.	RV	1

CAUTION: It is illegal for a port-pair to be cut-through if the clocks of the two ports differ by more than +/- 100 PPM. This will result in under-run from the slower port to the faster port. For this reason the CPU port must always be store-and-forward.

Table 112 JITTER_CFG (JITTER WATERMARK)

Name	Bit	Description	Туре	Default
TX Jitter CT	21:16	Number of frame hander clock cycles before transmission of a cut- through frame. This counter applies if the frame is not store- and-forward and the scheduler does not know whether the data path has finished storing the frame when the scheduler schedules the frame.	RW	0x20
TX Jitter SF	13:8	Number of frame handler clock cycles before transmission of a frame that meets the following condition: The writing of the frame is at least one segment (256 bytes) ahead of the reading of the frame. Note: This applies to store-and- forward traffic, as well as cut-	RW	0x20

		through traffic that has at least a segment in the memory as a result of switch congestion.		
TX Jitter SS	5:0	Number of EPL clock cycles before starting transmission of a frame that is one sub-segment in length (64 bytes) or less.	RW	0x20
RSVD	31:22, 15:14, 7:6	Reserved. Set to 0.	RV	0

5.7 Statistics

With few exceptions, all counters are 64 bits in the FM2224. The 64-bit counters are stored least significant 32-bit word first (even address). The MIB counters may be read as rarely or often as desired. A MIB counter must be read one at a time. The counters are listed in groups. Each counter in a group is mutually exclusive.

The MIB counters are split into two types: RMON and non-RMON counters. For RMON counters, the FM2224 implements the standard set of counters with no additions or deletions. There are two categories of exceptions to this rule:

- Any counter which is not meaningful in 802.3ae has been deleted. (RxAlignment Errors, TX collisions, etc)
- Packet size bins have been expanded to include some non-standard Ethernet packets, but these bins are only counted if the FM2224 is configured to allow the transmission of non-standard frame sizes.

The FM2224 contains additional counters beyond the traditional RMON MIB definitions. These counters are not targeted at well established software applications. Instead, their definition follows the principle that if the FM2224 has a rule to treat a specific class of packets in a certain way, then that treatment is counted. From this principle follows the security, filtering, and priority based counters, user programmable triggers and VLAN statistics.

5.7.1 Statistics registers

Table 113 STATS_MIN_FRAME

Name	Bit	Description	Туре	Default
Min Frame Octet Count	7:0	If a received frame size would have been less than Min Frame (defined in MAC_CFG_1), then its contribution to the transmitted octet count is Min Frame Octet Count. This variable has no effect on relay policy. This variable is in 4-byte words.	RW	0x10
RSVD	31:8	Reserved. Set to 0.	RV	0

Table 114 STATS_CFG

Name	Bit	Description	Туре	Default
RSVD	11	Reserved. Set to 0	RW	0
RSVD	10	Reserved. Set to 0.	RW	0
Group 8 Enable	9	Enable all group 8 counters.	RW	1

Group 7 Enable	8	Enable all group 7 counters.	RW	1
RSVD	7	Reserved. Set to 0.	RW	0
Group 3 Enable	6	Enable all group 3 counters.	RW	1
Group 5 Enable	5	Enable all group 5 counters.	RW	1
RSVD	4	Reserved. Set to 0.	RW	0
Group 6 Enable	3	Enable all group 6 counters.	RW	1
Group 4 Enable	2	Enable all group 4 counters.	RW	1
Group 2 Enable	1	Enable all group 2 counters.	RW	1
Group 1 Enable	0	Enable all group 1 counters.	RW	1
RSVD	31:12	Reserved. Set to 0.	RV	0

Table 115 STATS_DROP_COUNT

Name	Bit	Description	Туре	Default
Drop Count 2	31:16	Number of counter updates in groups 7-9 that were dropped due to counter event rate issues.	CR	0
Drop Count 1	15:0	Number of counter updates in groups 1-6 that were dropped due to counter event rate issues.	CR	0

5.7.2 Counter groups

There are 13 groups of counters excluding the extra counters in the Ethernet Port Logic. They are:

Per-port counters (one set per port):

- Group 1: RX packet counters per type.
- Group 2: RX packet counters per size.
- Group 3: RX octet counters.
- Group 4: RX packet counters per priority.
- Group 5: RX octet counters per priority.
- Group 6: RX packet counters per flow.
- Group 7: TX packet counters per type.
- Group 8: TX packet counters per priority.
- Group 9: TX octet counters.

Non-per port counters:

- Group 10: Congestion management packet counters (one global set).
- Group 11: VLAN octet counters (32 sets, assigned per VLAN).
- Group 12: VLAN packet counters (32 sets, assigned per VLAN).
- Group 13: Trigger packet counters (16 sets, one per trigger).

Table 116 Group 1 Counters - RX Packet Counters per Type [0..24]

Name	Description	Address
RxUcast	Valid unicast frames received (good frames only).	0x70000+0x200*i

RxBcast	Valid broadcast frames received (good frames only).	0x70002+0x200*i
RxMcast	Valid multicast frames received (good frames only, does not include broadcast or Pause frames).	0x70004+0x200*i
RxPause	Valid received pause frames	0x70006+0x200*i
RxFCSErrors	Received frames of proper size but CRC error, and integral number of octets.	0x70008+0x200*i
RxSymbolErrors	Received frames of proper size, but with symbol error.	0x7000A+0x200*i

Table 117 Group 2 Counters - RX Packet Counters per Size [0..24]

Name	Description	Address
RxMinto63	Received frames of < 64 octets that are not error frames because the min frame size is set below the Ethernet minimum (good frames only).	0x70080+0x200*i
Rx64	Received frames of 64 octets (good frames only).	0x70082+0x200*i
Rx65to127	Received frames of 65 to 127 octets (good frames only).	0x70084+0x200*i
Rx128to255	Received frames of 128 to 255 octets (good frames only).	0x70086+0x200*i
Rx256to511	Received frames of 256 to 511 octets (good frames only).	0x70088+0x200*i
Rx512to1023	Received frames of 512 to 1023 octets (good frames only).	0x7008A+0x200*i
Rx1024to1522	Received frames of 1024 to 1522 octets (good frames only).	0x7008C+0x200*i
Rx1523to2047	Received frames of 1523 to 2047 octets (good frames only).	0x7008E+0x200*i
Rx2048to4095	Received frames of 2048 to 4095 octets (good frames only).	0x70090+0x200*i
Rx4096to8191	Received frames of 4096 to 8191 octets (good frames only).	0x70092+0x200*i
Rx8191to10239	Received frames of 8192 to 10239 octets (good frames only).	0x70094+0x200*i
Rx10240toMax	Received frames of 10240 to MaxFrame octets. Note: Maxframe is configurable. This counter will only be activated if MaxFrame is > 10240. That is it is the count of non-error frames above 10240. In any case, Fulcrum strongly recommends against sending packets above 10240 octets, as the Ethernet CRC is no longer valid.	0x70096+0x200*i
RxFragments	Received frames smaller than Min Sized Frame octets with either a CRC or alignment error.	0x7009C+0x200*i
RxUndersized	Received frames smaller than the minimum frame size but otherwise well	0x70098+0x200*i

	formed with a good CRC.	
RxJabbers	Received frames greater than MaxFrame octets and with either a CRC or alignment error. This counter is only 16 bits.	0x80029+0x400*(N- 1)
RxOversized	Received frames greater than MaxFrame octets . This counter includes oversized well formed packets as well oversized packets with bad a CRC or an alignment problem. The software must read the counter STAT_RX_JABBER[Jabber Count] in the EPL to detect how many of the oversized frames where actually malformed packets. NOTE: If the frame is counted here, it is not counted in a bin counter RXXXXXtoYYYY even if it fits in that bin.	0x7009A+0x200*i

Table 118 Group 3 Counters - RX Octet Counters [0..24]

Name	Description	Address
RxGoodOctets	Received octets on good packets.	0x700A0+0x200*i
RxBadOctets	Received octets on bad packets. Note: total received octets is the sum of RxGoodOctets and RxBadOctets.	0x700A2+0x200*i

Table 119 Group 4 Counters - RX Packet Counters per Priority [0..24]

Name	Description	Address
RxP0	Received frames of priority 0.	0x70010+0x200*i
RxP1	Received frames of priority 1.	0x70012+0x200*i
RxP2	Received frames of priority 2.	0x70014+0x200*i
RxP3	Received frames of priority 3.	0x70016+0x200*i
RxP4	Received frames of priority 4.	0x70018+0x200*i
RxP5	Received frames of priority 5.	0x7001A+0x200*i
RxP6	Received frames of priority 6.	0x7001C+0x200*i
RxP7	Received frames of priority 7.	0x7001E+0x200*i

Table 120 Group 5 Counters - RX Octet Counters per Priority [0..24]

Name	Description	Address
RxOctetsP0	Received octets on Priority 0.	0x70120+0x200*i
RxOctetsP1	Received octets on Priority 1.	0x70122+0x200*i
RxOctetsP2	Received octets on Priority 2.	0x70124+0x200*i
RxOctetsP3	Received octets on Priority 3.	0x70126+0x200*i
RxOctetsP4	Received octets on Priority 4.	0x70128+0x200*i
RxOctetsP5	Received octets on Priority 5.	0x7012A+0x200*i
RxOctetsP6	Received octets on Priority 6.	0x7012C+0x200*i
RxOctetsP7	Received octets on Priority 7.	0x7012E+0x200*i

Table 121 Group 6 Counters - RX Packet Counters per Flow [0..24]

Name	Description	Address
FIDForwarded	Number of frames that were forwarded normally, either unicast or multicast, as a result of a lookup of a valid entry in the MAC address table, or a broadcast. Note: This counter does not count mirrored frames.	0x70100+0x200*i
FloodForwarded	Number of good unicast addressed frames that were flooded because the destination is unknown, or an unregistered multicast.	0x70102+0x200*i
TriggerMirrored	Number of good frames that were mirrored. Note: Total number of normally forwarded packets = FIDForwarded + FloodForwarded + TriggerMirrored. This counter is only incremented if flooding is enabled in the switch.	0x70112+0x200*i
STPDrops	Number of frames that were dropped because either the ingress or egress port is not in the forwarding spanning tree state, resulting in a frame drop on ingress.	0x70104+0x200*i
ReservedTraps	Number of frames that are trapped to the CPU and not forwarded normally, as a result of any of the three specific trap functions: Destination address = IEEE reserved group address (as configured in SYS_CFG_1) Destination address = CPU MAC address (as configured in SYS_CFG_3 and SYS_CFG_4) Ether-type = Ether-type trap (as configured in SYS_CFG_6)	0x70106+0x200*i
BroadcastDrops	Number of frames that were dropped with DA=xFFFFFFFFFFFF because storm control is enabled.	0x70116+0x200*i
SecurityViolationDrops	Number of frames that are dropped or trapped because they are considered a security violation.	0x70108+0x200*i
VLANTagDrops	Number of frames discarded because the frames were untagged, and drop untagged is configured, or the frames were tagged, and drop tagged is configured.	0x7010A+0x200*i
VLANIngressBVDrops	Number of frames dropped for an Ingress VLAN boundary violation. Note: This only applies to 802.1Q, because in port-based VLAN there is no such thing as an ingress violation.	0x7010C+0x200*i
VLANEgressBVDrops	Number of unicast frames dropped for an Egress VLAN boundary violation. This does not mean the number of ports	0x7010E+0x200*i

	filtered by the VLAN membership list in a multicast or flood; it means the destination addresscorresponds to a port that is not (or no longer) in the VLAN membership list, so the frame was dropped and not forwarded.	
TriggerRedirAndDrops	Number of frames that were dropped or redirected because they caused a user defined trigger to fire.	0x70110+0x200*i
DLFDrops	Number of frames that were discarded because there was a destination lookup failure and flooding is not enabled in the switch. Note: This counter is incremented for unicast. & multicast	0x70114+0x200*i
CMRxDrops	Number of frames dropped for exceeding the RX shared watermark.	0x70118+0x200*i

Table 122 Group 7 Counters - TX Packet Counters per Type [0..24]

Name	Description	Address
TxUnicast	Unicast frames transmitted, and valid FCS	0x70020+0x200*i
TxBroadcast	Broadcast frames transmitted, and valid FCS	0x70022+0x200*i
TxMulticast	Multicast frames transmitted, and valid FCS	0x70022+0x200*i
TxPause	Transmitted pause frames, and valid FCS. This counter is a 32 bit counter only. Also described in Table 166.	0x80026+0x400*(N- 1)
TxFCSErrors	Transmitted frames with FCS errors This counter is a 32 bit conter only. Also described in Table 165	0x80027+0x400*(N- 1)
TxErrorDrops	The number of frames that the were marked on ingress as erroneous (either due to an FCS or PHY error, or due to under/over size problems) which the switch element actually managed to discard. Frames marked as erroneous on ingress which were transmitted (due to cut- through) will not be included in this counter.	0x70028+0x200*i
TxTimeoutDrops	A frame in a TX queue was drop as a result of a time out.	0x70026+0x200*i

Table 123 Group 8 Counters - TX Packet Counters per Size [0..24]

Name	Description	Address
TxMinto63	Transmitted frames of min frame size to 63 octets. This counter is for non-error frames that are less than 64 octets because the min frame size is set below 64 octets in the MAC, or error frames that the switch transmitted anyway because MAC_CFG_2[Min Frame Discard] was not set (includes bad frames)	0x700A8+0x200*i

Tx64	Transmitted frames of 64 octets. (includes bad frames)	0x700AA+0x200*i
Tx65to127	Transmitted frames of 65 to 127 octets. (includes bad frames)	0x700AC+0x200*i
Tx128to255	Transmitted frames of 128 to 255 octets. (includes bad frames)	0x700AE+0x200*i
Tx256to511	Transmitted frames of 256 to 511 octets. (includes bad frames)	0x700B0+0x200*i
Tx512to1023	Transmitted frames of 512 to 1023 octets. (includes bad frames)	0x700B2+0x200*i
Tx1024to1522	Transmitted frames of 1024 to 1522 octets. (includes bad frames)	0x700B4+0x200*i
Tx1523to2047	Transmitted frames of 1522 to 2047 octets. (includes bad frames)	0x700B6+0x200*i
Tx2048to4095	Transmitted frames of 2048 to 4095 octets. (includes bad frames)	0x700B8+0x200*i
Tx4096to8191	Transmitted frames of 4096 to 8191 octets. (includes bad frames)	0x700BA+0x200*i
Tx8192to10239	Transmitted frames of 8192 to 10239 octets. (includes bad frames)	0x700BC+0x200*i
Tx10240toMax	Transmitted frames of 10240 to MaxFrame octets. (includes bad frames). This counter will only be activated if Maxframe is > 10240. That is it is the count of non-error frames above 10240. However, Fulcrum strongly recommends not sending packets above 10240, as the Ethernet CRC isn't long enough.	0x700BE+0x200*i

Table 124 Group 9 Counters - TX Octet Counters [1..24]

Name	Description	Address
TxOctets	Transmitted octets including CRC but excluding preambles and inter-frame characters.	Port 1N: 0x802C + 0x400*(i-1)

Table 125 Group 10 Counters - Congestion Management Counters

Name	Description	Address
CMTxDrops[024]	Count of frames dropped for congestion management from TX port 0.	0x66080+2*i
CMGlobalLowDrops	Count of frames dropped for congestion management from the global low WRED watermark.	0x66000
CMGlobalHighDrops	Count of frames dropped from the global high WRED watermark.	0x66002
CMGlobalPrivilegeDrops	Count of frames dropped from the global privilege watermark.	0x66004

Note: The CMTxDrop[n] refer to the shared watermarks only. A packet is only dropped (and counted) for one reason, though there may be multiple watermark checks that a frame has to pass before it is forwarded, there is only one WRED check.

Table 126 Group 11 Counters - VLAN Octet Counters [0..31]

Name	Description	Address	
VLANUnicastOctets[i]	Unicast octets received on VLAN[i].	0x66180+2*i	
VLANXcastOctets[i]	Broadcast and multicast octets received on VLAN[i].	0x661C0+2*i	

Table 127 Group 12 Counters - VLAN Packet Counters [0..31]

Name	Description	Address
VLANUnicast[i]	Unicast frames received on VLAN[i]	0x66100+2*i
VLANXcast[i]	Broadcast and multicast frames received on VLAN[i]	0x66140+2*i

Note: $0 \le i \le 31$. See VCNT field in VID table. This is the index i.

Table 128 Group 13 Counters - Trigger Counters [0..16]

Name	Description	Address
TrigCount[i]	Number of times trigger "I" was taken, where $0 \le i \le 15$.	0x660C0+2*i
TrigCount[16]	No trigger was taken.	0x660E0

5.8 EPL Registers

5.8.1 SERDES Registers

Table 129 SERDES_CTRL_1 [1..24]

Name	Bit	Description	Туре	Default
DEQ Lane D	31:28	Equalization for lane D.	RW	0
DEQ Lane C	27:24	Equalization for lane C.	RW	0
DEQ Lane B	23:20	Equalization for lane B.	RW	0
DEQ Lane A	19:16	Equalization for lane A.	RW	0
DTX Lane D	15:12	Current drive for lane D.	RW	0
DTX Lane C	11:8	Current drive for lane C.	RW	0
DTX Lane B	7:4	Current drive for lane B.	RW	0
DTX Lane A	3:0	Current drive for lane A.	RW	0

Table 130 Equalization and Driver Table

Dtx[3:0]	Actual/Nominal Current	Deq[3:0]	leq/ldr versus Deq[3:0]
0000	1.00	0000	0.00
0001	1.05	0001	0.04
0010	1.10	0010	0.08
0011	1.15	0011	0.12
0100	1.20	0100	0.16
0101	1.25	0101	0.20
0110	1.30	0110	0.24

0111	1.35	0111	0.28
1000	0.60	1000	0.32
1001	0.65	1001	0.36
1010	0.70	1010	0.40
1011	0.75	1011	0.44
1100	0.80	1100	0.48
1101	0.85	1101	0.52
1110	0.90	1110	0.60
1111	0.95	1111	0.65

Table 131 SERDES_CTRL_2 [1..24]

Name	Bit	Description	Туре	Default
PLL Reset CD	17	PLL reset of the PLL that covers lanes C and D.	RW	1
PLL Reset AB	16	PLL reset of the PLL that covers lanes A and B.	RW	1
Lane Power Down	15:12	Independent lane power down. 1 bit per lane.	RW	b1111
		Note: The FM2224 operates in 4 lane or 1 lane modes only. In the one lane mode, only lane 0 or lane 3 will be enabled.		
Lane Reset	11:8	Independent lane reset. 1 bit per lane.	RW	b1111
High Drive	7:4	1 bit per lane. See table.	RW	0
Low Drive	3:0	1 bit per lane. See table.	RW	0
RSVD	31:18	Reserved. Set to 0.	RV	0

The 2 bit number constructed from 1 bit per lane of the Low Drive field and one bit per lane of the High Drive field is used to encode the nominal drive current, according to the following table:

Table 132 Nominal SERDES Drive Current

HiDrv	LoDrv	Nominal Driver Current
0	0	20mA
0	1	10mA
1	0	28mA
1	1	Reserved

Table 133 SERDES_CTRL_3 [1..24]

Name	Bit	Description	Туре	Default
DC	19:0	Lane locked and signal detect de- assertion count. Number of cycles to count before de-asserting SD bit in SERDES STATUS register. (CX4 spec is 250us) and LU in PCS Status register (default: 78,125)	RW	x1312D

RSVD

31:20 Reserved. Set to 0.

RV 0

Table 134 SERDES_TEST_MODE [1..24]

Name	Bit	Description	Туре	Default
FE	6	Enables PCS framer. The function of the PCS framer is to look for the comma character and instruct the SERDES I/O to shift by a certain number of bits when the comma character is not properly aligned. The PCS framer must be enabled at all time except during SERDES testing using BIST.	RW	1
BS	5	Synchronizes the RX BIST checker. When register de- asserted allows RX BIST to start checking. Change in state is delayed by 5 cycles to allow for starting of pattern through setting BM and also de-assertion the BS bit.	RW	1
Test Mode	4:3	Test Mode 0x0 – normal -default 0x1 - Parallel Loop-back 0x2-0x3 – RSVD	RW	0
BIST Mode	2:0	0x0 - Disabled 0x1 - PRBS, Test Data = $x9+x5+1$, DE=1 0x2 - Test Data = D16.2 Pattern, DE =1 0x3 - Test Data = K28.5(Idle) Pattern, DE =1 0x4 - Test Data = K28.7(Test) Pattern, DE =1 0x5 - PRBS, Test Data = x10+x3+1, DE=0 0x6 - PRBS, Test Data = $x9+x4+1$, DE=1 0x7 - Reserved	RW	0
RSVD	31:7	Reserved. Set to 0.	RV	0

Table 135 SERDES_STATUS [1..24]

Name	Bit	Description	Туре	Default
Signal Detect	4	Signal Detect based on all four lanes. There is hysteresis in this status, see SERDES_CTRL_3.		
		In 1 lane mode, the Signal detect is only based on lane 0 or lane 3, depending the lane reversal state.		
Symbol Lock	3:0	Symbol Lock. 1 bit per lane. In 1 lane mode only the 1 active	RO	0

		lane should be read for polling the lock status. The other 3 bits are undefined.		
RSVD	31:5	Reserved. Set to 0.	RV	0

Table 136 SERDES_IP [1..24]

Name	Bit	Description	Туре	Default
EC	31:12	Saturating Error counter – increments once per any kind of error in any lane. For instance if all 12 errors(3 per lane) were asserted the Error count would increment by 1	CR	0
ER3DE	11	Lane 3 Disparity Error.	CR	0
ER3BC	10	Lane 3 Out of band Character.	CR	0
ER3LS	9	Lane 3 Loss of Signal.	CR	0
ER2DE	8	Lane 2 Disparity Error.	CR	0
ER2BC	7	Lane 2 Out of band Character.	CR	0
ER2LS	6	Lane 2 Loss of Signal.	CR	0
ER1DE	5	Lane 1 Disparity Error.	CR	0
ER1BC	4	Lane 1 Out of band Character.	CR	0
ER1LS	3	Lane 1 Loss of Signal.	CR	0
ER0DE	2	Lane 0 Disparity Error.	CR	0
ER0BC	1	Lane 0 Out of band Character.	CR	0
ER0LS	0	Lane 0 Loss of Signal.	CR	0

Note:

The interrupt detect field for SERDES_IP is only the OR of bits 11:0. Not the counter.

Table 137 SERDES_IM [1..24]

Name	Bit	Description	Туре	Default
Interrupt Mask	11:0	1 – Mask interrupt.	RW	XFFF
		0 – Do not mask interrupt.		
RSVD	31:12	Reserved. Set to 0.	RV	0

Table 138 SERDES_BIST_ERR_CNT [1..24]

Name	Bit	Description	Туре	Default
BEC	31:0	8 bits per lane. Saturating counter.	CR	0

5.8.2 PCS Registers

Table 139 PCS_CFG_1 [1..24]

Name	Bit	Description	Туре	Default
RSVD	31	Reserved. Set to 0	RV	0
DS	30:29	Datapath structure 2'b00: 4lanes (10Gb) 2'b01: 1 lane (1Gb) 2'b10: 1 lane – 1/10 effective data	RW	0

		rate (100Mb)		
		2'b11: 1 lane – 1/100 effective data rate (10Mb)		
AA	28	Arbitration scheme 1'b0: Fast Arbitration – used when EPL datapath frequency is the highest in the chip 1'b1: Slow Arbitration – used when EPL datapath is slower frequency and do not want to buffer up header data before arbitrating.	RW	1
DR	27	Disable Receive RS. This will stop accepting data from the MAC.	RW	0
DT	26	Disable Transmit RS.	RW	0
FS	25	Force Sequence Ordered Set Note: Cleared when FSIG is sent and will also cause FS bit to be asserted in PCS_IP Register	RW	0
FR	24	Force Remote Fault. Will force transmission of remote fault symbol continuously.	RW	0
FL	23	Force Local Fault. Will force transmission of local fault symbol continuously.	RW	0
EL	22	Enabling sending reomote fault in response to RX link being down	RW	0
EF	21	Enable sending of remote faults on RX and also allow the disabling of TX channel when 4 or more RF seen	RW	0
RI	20	Invert RX lane ordering (L3 – L0) In 1 lane mode this recieves all data on lane 3 instead of lane 0	RW	0
ТІ	19	Invert TX lane ordering (L3-L0) In 1 lane mode this sends all data out on lane 3 instead of lane 0	RW	0
DE	18	Enables the deficit idle count. The DIC counter allows an average of the programmed IFG, usually taken as 12, while forcing alignment of the start of frame to lane zero.	RW	0
II	17	Ignore inter-frame gap errors	RW	0
IP	16	Ignore Preamble Errors (4-lane (XAUI) mode only)	RW	0
ID	15	Ignore Data Errors. These are non-data characters found within the frame - bounded by S and T	RW	0
IA	14	Ignore All RX errors	RW	0
IF	13:8	Programmable inter-frame gap (6b – 0-63B) Transmit only.	RW	0xC
RSVD	7:6	Reserved. Set to 0.	RV	0

ND	5	Enable support of mis-alignment of incoming frame by 4 bits. Note: This should be enabled only in 10M/100M/1G mode. Do not set this option in 10G mode.	RW	0
SP	4	Enable support of shorter preamble in 10M/100M/1G mode only. Do not set this option in 10G mode.	RW	0
LF	3:0	LFSR seed. The LFSR seed is actually 8 bits; the lower nibble and upper nibble are initially loaded with this field	RW	0xAA

Bits: 14:17 are used for filtering out "garbage." This garbage is not counted, A packet that cannot be initially resolved will not be counted in the Ethernet counters as a bad packet.

Table 140 PCS_CFG_2 [1..24]

Name	Bit	Description	Туре	Default
LF	23:0	Local fault value. The default value is required for compliance to 802.3ae.	RW	x00000 1
RSVD	31:25	Reserved. Set to 0.	RV	0

Table 141 PCS_CFG_3 [1..24]

Name	Bit	Description	Туре	Default
RF	23:0	Remote fault value The default value is required for compliance to 802.3ae.	RW	x00000 2
RSVD	31:24	Reserved. Set to 0.	RV	0

Table 142 PCS_CFG_4 [1..24]

Name	Bit	Description	Туре	Default
FSIGTX	23:0	Transmit FSIG value	RW	x00000 0
RSVD	31:24	Reserved. Set to 0.	RV	0

Table 143 PCS_CFG_5 [1..24]

Name	Bit	Description	Туре	Default
FSIGRX	23:0	Received FSIG value	RO	X00000 0
RSVD	31:24	Reserved. Set to 0.	RV	0

Table 144 PCS_IP [1..24]

Name	Bit	Description	Туре	Default
Fault change	14	Indicates that there was a local fault or remote fault status change on the line. Read the LF or RF bit to determine the current status.	CR	0

Link Lin	40	This bit rolls ato the summer total		0
Link Up	13	This bit reflects the current status of the link.	RO	0
		If this bit is set, then the link is in good working order, i.e. signal is detected (SERDES Status[SD]), symbol locked (SERDES Status[SL]) and lanes are aligned (PCS Status[LA]).		
		Hysteresis on this signal is controlled by registger SERDES_CONTROL_3		
Link went up	12	Link transitioned from being down to being up	CR	0
Link went down	11	Link transitioned from being up to being down	CR	0
OV3	10	PCS FIFO overflow Lane 3	CR	0
OV2	9	PCS FIFO overflow Lane 2	CR	0
OV1	8	PCS FIFO overflow Lane 1	CR	0
OV0	7	PCS FIFO overflow Lane 0	CR	0
LA	6	Lanes Mis-Aligned Should be masked in 1 lane mode	CR	0
FSIG Sent	5	FSIG Sent	CR	0
RS	4	Remote fault sent	CR	0
LS	3	Local fault sent	CR	0
FD	2	FSIG detected	CR	0
RD	1	Remote Fault Detected. This is a status bit, not an interrupt bit. The switch set this bit when at least 4 RF symbols are received from the line within 128 cycles. The switch reset this bit when no	RO	0
		RF symbols are received within 128 cycles.		
LD	0	Local Fault Detected. This is a status bit, not an interrupt bit. The switch set this bit when at least 4 LF symbols are received from the line within 128 cycles. The switch reset this bit when no LF symbols are received within 128 cycles.	RO	0
RSVD	31:15	Reserved. Set to 0.	RV	0

Notes:

(1) Since the status register is sticky, many of the status errors bits will naturally be asserted after reset. Once the link is up, this register should be read to clear out the "old" reset values and allow new errors to be caught.

(2) In 1 lane mode the Autoneg Receive, UD, DU and LU bits are based on only the 1 active lane (could be lane 0 - default or lane 3 if lanes are reversed

Table 145 PCS_IM [1..24]

Name	Bit	Description	Туре	Default
Interrupt Mask	14:0	 1 – Mask interrupt 0 – Do not mask interrupt Note that bits 0, 1 and 13 correspond to status bits in the PCS_IP register and shall remain masked. 	RW	X7FFF
RSVD	31:15	Reserved. Set to 0.	RV	0

Table 146 PACING_PRI_WM [0..7] [1..24]

Name	Bit	Description	Туре	Default
Pace_WM[i]	24:0	Watermark (in 4 byte words). For a frame of IEEE 802.1p, the WM is checked against the IFGS. If the IFGS has exceeded this WM, then the frame is held on transmission until the IFGS has been decremented to this WM.* In 1 lane mode will increment counter by 4B for each cycle actual data is sent. One can think of the counter to be an effectively 23b byte counter. 1 lane 1/10 and 1/100 mode operation will be ignored and will make IFGS ineffective for these 2 modes.	RW	x0000
RSVD	31:25	Reserved. Set to 0.	RV	0

*At the link level, frames can no longer be re-ordered. So if the scheduler picks a frame to transmit that can't go because of the IFGS and the frame priority, it is **not** acceptable for a higher priority frame behind it to be transmitted first even if it meets the watermark check in EPL_PACE_PRI_WM[i].

* The index used [0..7] is retrieved from the switch priority to egress priority table TXPRI_MAP regardless if the priority regeneration is enabled or not.

Table 147 PACING_RATE [1..24]

Name	Bit	Description	Туре	Default
Pacing Rate	7:0	Pacing Rate controls the rate to a degree of 1 in 256. 0x00 – Pacing is not enabled 0x01 – Pacing is 1/256 the bandwidth. 0xFF – Pacing is 255/256 the	RW	x00
		bandwidth		
RSVD	31:8	Reserved. Set to 0.	RV	0

Table 148 PACING_STAT [1..24]

Name Bit	Description	Туре	Default	
----------	-------------	------	---------	--

IFGS	24:0	IFGS (calculated in bytes) from each frame accumulated from frame to frame.	RO	x0000
RSVD	31:25	Reserved. Set to 0.	RV	0

5.8.3 MAC Registers

Table 149 MAC_CFG_1 [1..24]

Name	Bit	Description	Туре	Default
Min Frame	29:24	Min Frame Size in words	RW	0x10
Max Frame	23:12	Max Frame Size in words	RW	0x180
CRC start	11:6	Number of words to skip before starting the CRC.	RW	0
Header Offset	5:0	Number of words to skip before the next 16 bytes is sent from the EPL to the frame processor.	RW	0
RSVD	31:30	Reserved. Set to 0.	RV	0

Note:

te: If a frame violates the min size frame, the following frame on that port will be corrupted as well.

Table 150 MAC_CFG_2 [1..24]

Name	Bit	Description	Туре	Default
VLAN Ether Type	31:16	This register is used when a new VLAN tag is added in front of an existing VLAN tag of type 8100. It defines the new Ethernet type to use for this new VLAN tag. If there is no VLAN tag x8100 present in the frame, then the Ethernet type used will be x8100 regardless of the content of this register.	RW	x8100
Pad Min Size	7	Pad frames that violate the Min Size to Min Size. If the frame entered the switch >= Min Size with a good CRC, and it has had a tag removed in the switch, it is padded to Min Size with a good CRC. If the frame entered the switch < Min Size and it cannot be discarded, then it leaves the switch padded to Min Size with a forced bad CRC.	RW	1
PHY Error Discard	6	Mark the frame as discard eligible if an illegal character has been detected by the PHY during packet reception.	RW	1
Max Len Discard	5	Mark the frame as discard eligible if the frame is above the maximum size. Once the length of a frame has exceeded Max Frame, its additional data is discarded at the	RW	1

		RX MAC regardless of the state of this bit.		
RX CRC Discard	4	Mark the frame as discard eligible if the frame received as an RX CRC error.	RW	1
Min Frame Discard	3	Mark the frame as discard eligible if the frame is smaller than the minimum size configured.	RW	1
Disable RX Pause	2	 0 - Parse RX Pause. The MAC will parse incoming RX pause frames, increment the RxPause counter and drop the frame. 1 - Do not parse RX Pause. Stream the pause frame into the switch, as a normal multicast frame, where it is subject to further processing. 	RW	1
Disable TX MAC	1	When set to 1, will stop transmission of frames from this port. Packets still drain from the switch element. The link transmits idles and stays in sync.	RW	0
Disable RX MAC	0	When set to 1, this idles the RX MAC on the next frame boundary. All incoming packets are then discarded and are thus prevented from entering the switch.	RW	0
RSVD	15:8	Reserved. Set to 0.	RV	0

Note:

(1) Marking a frame as discard eligible will force the frame to be dropped in store and forward mode and may cause the frame to be dropped in the cut-through mode. If the frame is not dropped and actually forwarded in the cut-through mode, then the frame will be transmitted with a corrupted CRC.

(2) A runt frame is flagged as an error to the frame processor and S.E. as soon as it is discovered.

(3) In store and forward mode, all error frames are discarded before being sent. In cutthrough mode, a packet is discarded if the error "catches up" with the head of the packet.

(4) Overflow always discards. It is not a programmable option.

(5) It's not a valid packet if you overflow on the first word.

(6) If Min frame is set to 64 bytes, and Min Frame Discard is enabled, then garbage inputs will never do more harm than result in a first good frame being discarded on the same port as the last bad frame. If in addition, the data-sheet specs a higher Total Switch Max Frame Rate than (Ports*64 bytes), then Min Frame can be reduced until (1/Min Frame) * Ports = Total Switch Max Frame Rate. If MAC_CFG_2[Min Frame discard] is off, but MAC_CFG_2[Pad to Min Size] is on, then the switch will never discard more than one good frame after the last bad frame per port. However, if Min Frame Discard is off and Pad to Min Size is not enabled, then all guarantees of frame discard are off except that the switch should not get into an illegal state.

Table 151 MAC_CFG_3 [1..24]

Name	Bit	Description	Туре	Default
Pause Value	15:0	Number of 512 bit times that the link partner needs to Pause.	RW	xFFFF
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 152 MAC_CFG_4 [1..24]

Name	Bit	Description	Туре	Default
Time to resend Pause Value	15:0	Pause time before the TX resends the pause ON frame	RW	xFFFF
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 153 MAC_CFG_5 [1..24]

Name	Bit	Description	Туре	Default
MSB of MA	15:0	Most significant 16 bits of the MAC address. Used as a source address when a PAUSE frame is transmitted.	RW	0
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 154 MAC_CFG_6 [1..24]

Name	Bit	Description	Туре	Default
LSB of MA	31:0	Least significant 32 bits of the MAC address. Used as a source address when a PAUSE frame is transmitted.	RW	0

Table 155 TX_PRI_MAP_1 [1..24]

Name	Bit	Description	Туре	Default
Pri7 Regen	31	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 7.	RW	0x0
Pri7	30:28	Map Switch Priority 7 to Egress Priority	RW	0x7
Pri6 Regen	27	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 6.	RW	0x0
Pri6	26:24	Map Switch Priority 6 to Egress Priority	RW	0x6
Pri5 Regen	23	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 5.	RW	0x0
Pri5	22:20	Map Switch Priority 5 to Egress Priority	RW	0x5
Pri4 Regen	19	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 4.	RW	0x0
Pri4	18:16	Map Switch Priority 4 to Egress Priority	RW	0x4
Pri3 Regen	15	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 3.	RW	0x0
Pri3	14:12	Map Switch Priority 3 to Egress	RW	0x3

		Priority		
Pri2 Regen	11	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 2.	RW	0x0
Pri2	10:8	Map Switch Priority 2 to Egress Priority	RW	0x2
Pri1 Regen	7	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 1.	RW	0x0
Pri1	6:4	Map Switch Priority 1 to Egress Priority	RW	0x1
Pri0 Regen	3	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 0.	RW	0x0
Pri0	2:0	Map Switch Priority 0 to Egress Priority	RW	0x0

Table 156 TX_PRI_MAP_2 [1..24]

Name	Bit	Description	Туре	Default
Pri15 Regen	31	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 15.	RW	0x0
Pri15	30:28	Map Switch Priority 15 to Egress Priority	RW	0x7
Pri14 Regen	27	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 14.	RW	0x0
Pri14	26:24	Map Switch Priority 14 to Egress Priority	RW	0x6
Pri13 Regen	23	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 13.	RW	0x0
Pri13	22:20	Map Switch Priority 13 to Egress Priority	RW	0x5
Pri12 Regen	19	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 12.	RW	0x0
Pri12	18:16	Map Switch Priority 12 to Egress Priority	RW	0x4
Pri11 Regen	15	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 11.	RW	0x0
Pri11	14:12	Map Switch Priority 11 to Egress Priority	RW	0x3
Pri10 Regen	11	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 10.	RW	0x0
Pri10	10:8	Map Switch Priority 10 to Egress	RW	0x2

		Priority		
Pri9 Regen	7	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 9.	RW	0x0
Pri9	6:4	Map Switch Priority 9 to Egress Priority	RW	0x1
Pri8 Regen	3	Indicates if the Egress Priority shall be replace (1) or not (0) for switch priority 8.	RW	0x0
Pri8	2:0	Map Switch Priority 8 to Egress Priority	RW	0x0

Table 157 MAC_STATUS [1..24]

Name	Bit	Description	Туре	Default
TX Status	1	TX idle	RO	0
RX Status	0	RX idle	RO	0
RSVD	31:2	Reserved. Set to 0.	RV	0

Table 158 MAC_IP [1..24]

Name	Bit	Description	Туре	Default
FE	10	Fabric error. This bit is set whenever the enable signal from the switch array becomes deasserted regardless where we are in the frame or if there is any data received at all. This could only happen if the crossbar becomes congested. It is not expected to happen if the chip is operated in normal conditions.	CR	0
PE	9	RX Pause Enable de-asserted	CR	0
TU	8	TX underflow	CR	0
TR	7	TX CRC without RX CRC error	CR	0
ТС	6	TX CRC error (inclusive of TR)	CR	0
HE	5	RX PHY error	CR	0
PO	4	RX Pause Overflow. Note that this is for debug purpose at the unit level and cannot happen at the system level.	CR	0
JE	3	RX Oversized error	CR	0
CE	2	RX CRC error	CR	0
OE	1	Overflow error. This bit is set if a data word has been discarded because either the fabric or the frame control back pressured and data was actually lost. This could only happen once per frame.	CR	0

RE	0	RX Runt error	CR	0
RSVD	31:11	Reserved. Set to 0.	RV	0

Note: (1) The MAC and SERDES and PCS IP registers are or'd together to form a hardware EPL interrupt. This is visible at the per-port level interrupts.

Table 159 MAC_IM [1..24]

Name	Bit	Description	Туре	Default
Mask Interrupts	10:0	For each interrupt: 1 – Mask Interrupt 0 – Do not mask interrupt	RW	0x7FF
RSVD	31:11	Reserved. Set to 0.	RV	0

Table 160 EPL_INT_DETECT [1..24]

Name	Bit	Description	Туре	Default
EPL_IP_3	2	There is an interrupt in MAC_IP	RO	0
EPL_IP_2	1	There is an interrupt in PCS_IP	RO	0
EPL_IP_1	0	There is an interrupt in SERDSE_IP	RO	0
RSVD	31:3	Reserved. Set to 0.	RV	0

Table 161 EPL_LED_STATUS [1..24]

Name	Bit	Description	Туре	Default
TT	4	TX Port Transmitting – TX port transmiting data	CR	0
RR	3	RX Port Receiving – RX port receiving data	CR	0
RL	2	RX Port Status – RX port has link up	CR	0
PR	1	Port Remote Fault – port has or has sent a remote fault	CR	0
PS	0	Port Status - port has link sync error or no signal	CR	0
RSVD	31:5	Reserved. Set to 0.	RV	0

Note: This register is made clear on read for the LED state machine. It is possible for the CPU to read this as well, in which case the results are cleared independent of the LED state machine. These fields are not "Or-d" into a standard interrupt detect chain.

Table 162 STAT_EPL_ERROR1[1..24]

Name	Bit	Description	Туре	Default
Overflow Count	15:8	Number of overflowed frames (RX) that were discarded before any information was sent to the FCU	RO	0
Underflow Count	7:0	Number of frame that were terminated early or discarded due to underflow in the TX	RO	0

RSVD 31:16 Reserved. Set to 0. RV 0	0
-------------------------------------	---

Table 163 STAT_EPL_ERROR2[1..24]

Name	Bit	Description	Туре	Default
Corrupted Frame Count	15:0	Count the number of frames that where received with good CRC but transmitted with a bad CRC by this port because there was an error detected in the message array memory.	RO	0
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 164 STAT_RX_JABBER [1..24]

Name	Bit	Description	Туре	Default
Jabber Count	15:0	Number of frames received in which frame size > MaxFrame and the CRC is invalid. Writing into this register will reset the register to 0.	RWC	0
RSVD	31:16	Reserved. Set to 0.	RV	0

Table 165 STAT_TX_CRC [1..24]

Name	Bit	Description	Туре	Default
TX CRC Errors	31:0	Number of frames transmitted with CRC errors. Part of the RMON counters, even though they are physically located in the MAC. Writing into this register will reset the register to 0.	RWC	0

Table 166 STAT_TX_PAUSE [1..24]

Name	Bit	Description	Туре	Default
TX Pause	31:0	Number of Pause frames transmitted by the MAC. Part of the RMON counters, even though they are physically located in the MAC. Writing into this register will reset the register to 0.	RWC	0

Table 167 STAT_TX_BYTECOUNT [1..24]

Name	Bit	Description	Туре	Default
TX Byte Count	63:0	Number of bytes transmitted (see STAT_TxOctets in the statistics section). Writing into this register will reset the register to 0.	RWC	0

5.8.4 Scan Registers

Table 168 SCAN_FREQ_MULT

Name	Bit	Description	Туре	Default
MGMT2SCAN	7:0	CLK_EBI divider	RW	0
RSVD	31:8	Reserved. Set to 0.	RV	0

Table 169 SCAN_CTRL

Name	Bit	Description	Туре	Default
Shift Count	6:0	Number of bits to shift	RW	0
Test Mode	1	Select group of scan chain: 0 = scan chains 0-15 1 = scan chains 16-31	RW	0
Enable Capture	0	Execute capture (self clear after capture done)	RW	0
RSVD	31:7	Reserved. Set to 0.	RV	0

Table 170 SCAN_SEL

Name	Bit	Description	Туре	Default
Select	31:0	Select scan chain. This is a one hot encoding (1 << "n").	RW	0

Table 171 SCAN_DATA_IN

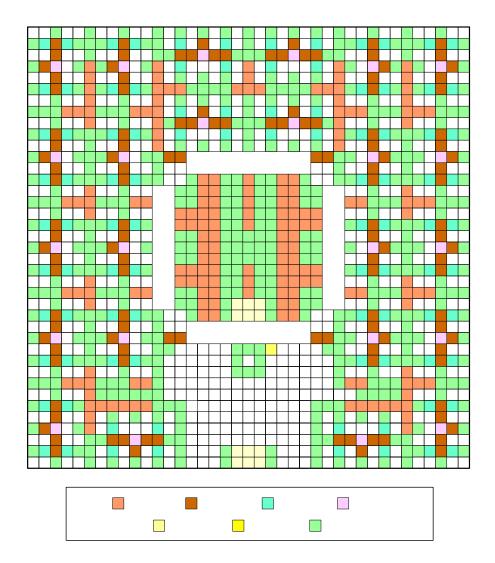
Name	Bit	Description	Туре	Default
Data	31:0	Data received from scan chain	RO	0

Table 172 SCAN_DATA_OUT

Name	Bit	Description	Туре	Default
Data	31:0	Data sent to scan chain	RW	0

6.0 Signal, Ball, and Package Descriptions

6.1 Package Overview


The FM2224 uses the following package:

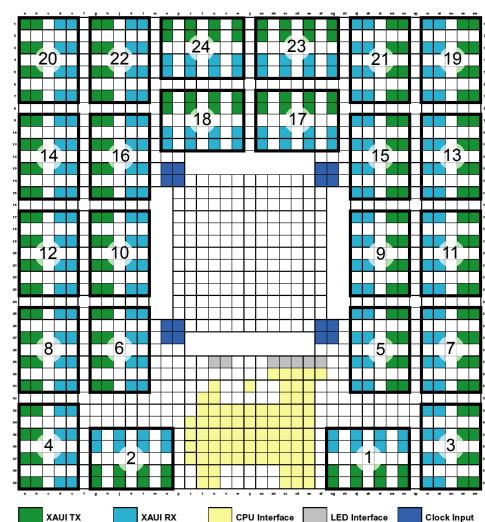
- Overall package dimensions of 40mm x 40mm
- Flip-chip-based BGA package, with attached heat spreader
 - 39 balls on a side (ball pitch of 1.0mm)
 - 1,433 total balls in use

6.2 Power Mapping

The following figure shows a visual mapping of the power pins for the device:

Figure 31 Power Mapping for the FM2224 1433-ball BGA Package

Do Not Reproduce Document: FM2224-DS-0.7 Date: March, 2006



Note

Consult the FM2224 Design and Layout Guide (Fulcrum document number: FM2224-DG) for specific information on filtering strategies.

6.3 Interface Mapping

The following figure shows a visual mapping of the interface pins for the device:

Figure 32 Interface Mapping

6.4 Signal Descriptions

This section describes the signals for the device, providing details on the name, ball assignment, type, and use of each signal.

6.4.1 FM2224 Signals

Table 173 FM2224 XAUI Signal Pins

Signal Name	I/O	Туре	Description
Pnn_RAN [1:24]	CML	Input	Differential receive inputs for channel A Complement
Pnn_RAP [1:24]	CML	Input	Differential receive inputs for channel A True
Pnn_RBN [1:24]	CML	Input	Differential receive inputs for channel B Complement
Pnn_RBP [1:24]	CML	Input	Differential receive inputs for channel B True
Pnn_RCN [1:24]	CML	Input	Differential receive inputs for channel C Complement
Pnn_RCP [1:24]	CML	Input	Differential receive inputs for channel C True
Pnn_RDN [1:24]	CML	Input	Differential receive inputs for channel C Complement
Pnn_RDP [1:24]	CML	Input	Differential receive inputs for channel C True
Pnn_TAN [1:24]	CML	Input	Differential transmit outputs for channel A - Complement
Pnn_TAP [1:24]	CML	Input	Differential transmit outputs for channel A - True
Pnn_TBN [1:24]	CML	Input	Differential transmit outputs for channel B - Complement
Pnn_TBP [1:24]	CML	Input	Differential transmit outputs for channel B - True
Pnn_TCN [1:24]	CML	Input	Differential transmit outputs for channel C - Complement
Pnn_TCP [1:24]	CML	Input	Differential transmit outputs for channel C - True
Pnn_TDN [1:24]	CML	Input	Differential transmit outputs for channel D - Complement
Pnn_TDP [1:24]	CML	Input	Differential transmit outputs for channel D - True
RREF [1:24]	Analog	Input	Reference resistor pad. RREF connects a $1.2K\Omega$ external resistor to VDDA to provide a reference current for the driver and equalization circuits

Note There are twenty-four XAUI interfaces in total. The "nn" in the above signal names represent a port number from 1 to 24.

Table 174 FM2224 High-Speed Clock Signal Pins

Signal Name	I/O	Туре	Description
RCK1AN	CML (1)	Input	Differential Reference Clock

224 Advance	d Information	i Data s	Sheet
	LVDS LVPECL		A for Ports 2, 4, 6, 8, 10, 12 Complement
RCK1AP	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 2, 4, 6, 8, 10, 12 True
RCK1BN	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 2, 4, 6, 8, 10, 12 Complement
RCK1BP	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 2, 4, 6, 8, 10, 12 True
RCK2AN	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 14, 16, 18, 20, 22, 24 Complement
RCK2AP	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 14, 16, 18, 20, 22, 24 True
RCK2BN	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 14, 16, 18, 20, 22, 24 Complement
RCK2BP	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 14, 16, 18, 20, 22, 24 True
RCK3AN	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 13, 15, 17, 19, 21, 23 Complement
RCK3AP	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 13, 15, 17, 19, 21, 23 True
RCK3BN	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 13, 15, 17, 19, 21, 23 Complement
RCK3BP	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 13, 15, 17, 19, 21, 23 True
RCK4AN	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 1, 3, 5, 7, 9, 11 Complement
RCK4AP	CML (1) LVDS LVPECL	Input	Differential Reference Clock A for Ports 1, 3, 5, 7, 9, 11 True
RCK4BN	CML (1)	Input	Differential Reference Clock B for Ports 1, 3, 5, 7, 9, 11

	LVDS LVPECL		Complement
RCK4BP	CML (1) LVDS LVPECL	Input	Differential Reference Clock B for Ports 1, 3, 5, 7, 9, 11 True

Note: These pins are AC coupled and are compatible with the stated IO. For LVDS IO a 2K resistor is required between the lines on the driver side of the isolation capacitors

Table 175 FM2224 CPU Interface Signal Pins

Signal Name	I/O	Туре	Description
CPU_CLK	Input	LVTTL	Clock for Bus Interface (maximum frequency is 100MHz)
CS_N	Input	LVTTL	Chip select. Active low. Enables the FM2224 to act on an incoming request. Allows multiple devices with the same address space to share the bus. Two uses for the signal: (1) To enable the start of a new request – to qualify AS_N; (2) To qualify the outputs DATA and DTACK_N. When asserted, the two outputs are tri-stated. (Pull-up recommended on board.)
ADDR[23:2]	Input	LVTTL	Address Bus. Address must be driven whenever AS_N asserted.
DATA[31:0]	In/Out	LVTTL	Bi-directional data bus. Must be driven when AS_N and RW_N (read) are asserted. Will be driven on a write when DTACK_N is asserted. The DATA bus is undriven when the device is coming out of reset. (Pull-down recommended on board.)
PAR[3:0]	In/Out	LVTTL	Even parity for each byte of data. PAR must be driven when AS_N and RM_N (read) are asserted and Ignore_Parity strapping pin is not asserted. PAR will be driven on a write when DTACK_N is asserted. (Pull-down recommended on board.)
AS_N	Input	LVTTL	Address Strobe. Indicates the start of a valid transaction on the bus. Active Low. Must be inactive after reset. (Pull-up recommended on board.)
RW_N	Input	LVTTL	Read/Write. Indicates when a read (active high) or write (active low) transaction is being requested. Determines which device drives the data bus. Polarity can be switched through the RW_INV strapping pin.

RW_INV	Input	LVTTL	Inverts RW_N pin. When connected to ground, then read is active high while write is active low. Conversely, when connected to VDD33, read is active low while write is active high.
DTACK_N	Output	LVTTL	Data transfer acknowledge. Indicates the completion of a data transfer. At the termination of a request, this signal is actively driven inactive for 1 cycle and then tri-stated. The pin is tri- stated when the device is coming out of reset. Pull-up or pull-down should be added to board, according to whether DTACK_INV is asserted.
DTACK_IN V	Input	LVTTL	Strap pin. Inverts sense of DTACK_N. If connected to ground, then DTACK_N is active low. If connected to VDD33, then DTACK_N is active high.
DERR_N	Output	LVTTL	Data error occurred; transaction must be aborted and was not completed. Indicates write data parity errors. Only asserted (and valid) when DTACK_N asserted. Tri-stated otherwise.
CPU_RESE T_N	Input	LVTTL	Hard reset for Management block domain. Reserved for Fulcrum. Connect to an external pull-up.
INTR_N	Output	SE, Open Drain	Synchronous interrupt. Indicates an internal error. The global interrupt status register must be checked to ascertain the source of the problem. Active Low. (Pull-up recommended on board.)
IGNORE_P ARITY	Input	LVTTL	Disables parity checking on incoming write data.

Table 176 FM2224 DMA Pins

Signal Name	I/O	Туре	Description
TXRDY	Output	LVTTL	Transmit queue is ready to receive (connected to Pause channel)
RXRDY	Output	LVTTL	Receive queue has data to send to CPU
RXEOUT	Output	LVTTL	End of frame indication (instructs DMA controller to begin storing data to a new frame descriptor)

Table 177 FM2224 SPI Interface Signal Pins

Signal	I/O	Туре	Description

Name			
SPI_CLK	Output	LVTTL	SPI clock
SPI_CS_N	Output	LVTTL	SPI chip select (active low)
SPI_SI	Input	LVTTL	Serial data input
SPI_SO	Output	LVTTL	Serial data output

Table 178 FM2224 LED Interface Signal Pins

Signal Name	I/O	Туре	Description
LED_CLK	Output	LVTTL	Provides a continuous clock synchronous to the serial data stream output on the LED_DATA pin. Tri-stated with CHIP_LED_EN.
LED_DATA 0	Output	LVTTL	Serial bit stream from ports 1-8, and 0. Ports 1-8 are driven first, and then the CPU port (port 0) is driven. Asserted on the negative edge of LED_CLK. Tri-stated with CHIP_LED_EN.
LED_DATA 1	Output	LVTTL	Serial bit stream from ports 9-16. Data is driven on the negative edge of LED_CLK and is valid on the rising edge of CLK_LED. Mode 1 inverts the polarity of the data. Tri-stated with CHIP_LED_EN.
LED_DATA 2	Output	LVTTL	Serial bit stream from ports 17- 24. Data is driven on the negative edge of LED_CLK and is valid on the rising edge of CLK_LED. Mode 1 inverts the polarity of the data. Tri-stated with CHIP_LED_EN.
LED_EN	Output	LVTTL	Used in Mode1 as the latch enable for the shift register chain. In Mode 0, this signal is not used and should be left unconnected. Asserted when LED_CLK is low, coincident with the 36 th bit (last bit in LED data stream). Tri-stated with CHIP_LED_EN.

Table 179 FM2224 JTAG Interface Signal Pins

Signal Name	I/O	Туре	Description
ТСК	Input	LVTTL	JTAG Clock
TDI	Input	LVTTL	JTAG Input Data. Internally pulled up.
TMS	Input	LVTTL	JTAG Test Mode. Internally pulled up.
TRST_N	Input	LVTTL	JTAG Reset Pin. Internally pulled

			up.
TDO	Output	LVTTL	JTAG Data Out

Note When not using the JTAG interface, either drive the TCK pin with an external clock, or drive the TRST_N pin low. Conversely, when using the JTAG interface assert TRST_N along with chip reset to ensure proper reset of the JTAG interface prior to use.

Table 180 FM2224 Miscellaneous Signal Pins

Signal Name	I/O	Туре	Description
CHIP_RESET_ N	Input	LVTTL	Hard reset for the entire chip.
CONT_EN	Input	LVTTL	SerDes continuity test enable.
CONT_OUT	Output	LVTTL	SerDes continuity test output.
DIODE_IN DIODE_OUT	Sense	LVTTL	Die temperature is measured with a standard temperature sensing diode. Both terminals of the diode are exposed through the die to the package. This shall give a measurement of temperature to within 25% of the die temperature.
CHIP_LED_EN	Output	LVTTL	LED output enable.
EEPROM_EN	Input	LVTTL	Bypasses EEPROM operation during boot.
AUTOBOOT	Input	LVTTL	Bypasses fuse box operation during boot.
FH_PLL_REFC LK	Input	LVTTL	Refclock input to frame handler PLL

Table 181 FM2224 Asynchronous Interface Signal Pins

Fulcrum has implemented certain signal pins for test and debug purposes. Generally, they are reserved for Fulcrum's use. Fulcrum will enumerate these pins and provide guidelines on their termination in the final data sheet.

6.4.2 Power Supply Pins and Recommendations

Table 182 FM2224 Power Supply Signal Descriptions

Signal Name	Quantity	Туре	Description	
VSS	402	Power	Ground, for Core and I/O	
VDD	196 Power Core VDD (1.		Core VDD (1.2 V)	
VDD33	12	Power	I/O VDD (3.3 V), for LVTTL	
VTT	48	Power	TX termination voltage, which can be used to adjust the common mode voltage and swing of TX outputs	

Note

6.4.2.1 Recommended Connections

Ideally the following power supplies should be on the board containing the FM2224:

- A single 1.2 V source to supply the core VDD
- A 1.5 V typical source to terminate and set the common mode of the CML TX interface
- A 3.3 V supply for the LVTTL I/O signals
- A 3.3 V noise minimized source to supply the PLL (VDDA33_PLL)

6.4.2.2 Recommended Filtering

The power supply should be filtered both at the source of the power supply and local to the power supply balls on the FM2224. The power balls have been designed to take advantage of the space on the inside of the signal pins on the back side of the board for this purpose.

Consult the FM2224 Design and Layout Guide (Fulcrum document number: FM2224 DG) for specific information on filtering strategies.

6.4.2.3 Power Budget for the Device

Multiple factors contribute to the power consumption of the FM2224 in operation, including:

- Number of enabled interfaces
- Core voltage
- Operating frequency of each interface
- Total cross-sectional bandwidth required for the application

At present, Fulcrum expects the device to consume approximately 1.5W per active interface, while operating at 10Gbps. Please consult the factory for updated power information before beginning a design using the FM2224.

6.4.3 Ball Assignment

Table 183 Package Ball Assignment in Numerical Order

Pkg Ball	Signal Name	Pkg Ball	Signal Name	Pkg Ball	Signal Name
a1	P20_TDP	p1	VSS	ag1	P23_TDP
a2	VSS	p2	VTT24	ag2	P23_TDN
a3	P20_TCP	р3	VDDX	ag3	VSS
a4	VSS	p4	VTT24	ag4	P23_RDP
a5	P20_TBP	p5	VSS	ag5	P23_RDN
a6	VSS	p6	VDD	ag6	VDD
a7	P20_TAP	р7	VSS	ag7	P17_TDP
a8	VSS	p8	VTT18	ag8	P17_TDN
a9	P14_TDP	p9	VDDX	ag9	VSS
a10	VSS	p10	VTT18	ag10	P17_RDP
a11	P14_TCP	p11	VSS	ag11	P17_RDN
a12	VSS	p12	VDDX	ag12	VDDX
a13	P14_TBP	p13	RCK4AN	ag13	RCK3AN
a14	VSS	p14	RCK4BN	ag14	RCK3BN
a15	P14_TAP	p15	VSS	ag15	NO BALL
a16	VSS	p16	VSS	ag16	NO BALL
a17	P12_TDP	p17	VDD	ag17	NO BALL
a18	VSS	p18	VDD	ag18	NO BALL
a19	P12_TCP	p19	VSS	ag19	NO BALL
a20	VSS	p20	VSS	ag20	NO BALL
a21	P12_TBP	p21	VSS	ag21	NO BALL
a22	VSS	p22	VDD	ag22	NO BALL
a23	P12_TAP	p23	VDD	ag23	NO BALL
a24	VSS	p24	VSS	ag24	NO BALL
a25	P08_TDP	p25	VSS	ag25	NO BALL
a26	VSS	p26	RCK2BN	ag26	RCK1BN
a27	P08_TCP	p27	RCK2AN	ag27	RCK1AN
a28	VSS	p28	VDDX	ag28	VDDX
a29	P08_TBP	p29	LEDCLK	ag29	VSS
a30	VSS	p30	NC	ag30	NC
a31	P08_TAP	p31	CONT_OUT	ag31	NC
a32	VSS	p32	NC	ag32	NC
a33	P04_TDP	p33	NC	ag33	NC
a34	VSS	p34	VSS	ag34	VSS
a35	P04_TCP	p35	VSS	ag35	P01_RDN
a36	VSS	p36	VSS	ag36	P01_RDP
a37	P04_TBP	p37	VSS	ag37	VSS
a38	VSS	p38	VSS	ag38	P01_TDN
a39	P04_TAP	p39	VSS	ag39	P01_TDP
b1	P20_TDN	r1	P24_TBP	ah1	VSS
b2	VTT20	r2	P24_TBN	ah2	VSS
b3	P20_TCN	r3	VDDX	ah3	VSS

b4	VDDX	r4	P24_RBP	ah4	VDD
b5	P20_TBN	r5	P24_RBN	ah5	VDD
b6	VTT20	r6	VSS	ah6	VDD
b7	P20_TAN	r7	P18_TBP	ah7	VDD
b8	VSS	r8	P18_TBN	ah8	VDD
b9	P14_TDN	r9	VDDX	ah9	VDD
b10	VTT14	r10	P18_RBP	ah10	VDD
b11	P14_TCN	r11	P18_RBN	ah11	VDD
b12	VDDX	r12	NO BALL	ah12	VSS
b13	P14_TBN	r13	NO BALL	ah13	VSS
b14	VTT14	r14	VSS	ah14	VSS
b15	P14_TAN	r15	VSS	ah15	NO BALL
b16	VSS	r16	VSS	ah16	NO BALL
b17	P12_TDN	r17	VDD	ah17	NO BALL
b18	VTT12	r18	VDD	ah18	NO BALL
b19	P12_TCN	r19	VSS	ah19	NO BALL
b20	VDDX	r20	VSS	ah20	NO BALL
b21	P12_TBN	r21	VSS	ah21	NO BALL
b22	VTT12	r22	VDD	ah22	NO BALL
b23	P12_TAN	r23	VDD	ah23	NO BALL
b24	VSS	r24	VSS	ah24	NO BALL
b25	P08_TDN	r25	VSS	ah25	NO BALL
b26	VTT08	r26	VSS	ah26	VSS
b27	P08_TCN	r27	NO BALL	ah27	VSS
b28	VDDX	r28	NO BALL	ah28	VSS
b29	P08_TBN	r29	LED_DATA0	ah29	VSS
b30	VTT08	r30	NC	ah30	VSS
b31	P08_TAN	r31	EEP_EN	ah31	VSS
b32	VSS	r32	NC _	ah32	VSS
b33	P04_TDN	r33	NC	ah33	DIODE_IN
b34	VTT04	r34	SPI_SO	ah34	VSS
b35	P04_TCN	r35	_ SPI_CS_N	ah35	VSS
b36	VDDX	r36	SPI_SCK	ah36	VTT01
b37	P04_TBN	r37	_ SPI_SI	ah37	VDDX
b38	VTT04	r38	NC	ah38	VTT01
b39	P04_TAN	r39	NC	ah39	VSS
c1	VSS	t1	VSS	aj1	P21_RAN
c2	VDDX	t2	VDDX	aj2	VSS
c3	VDDX	t3	VDDA	aj3	P21_RBN
c4	VDDA	t4	RREF24	aj4	VSS
c5	VDDX	t5	VSS	aj5	P21_RCN
c6	VDDX	t6	VSS	aj6	VSS
c7	VSS	t7	VSS	aj7	P21_RDN
c8	VSS	t8	VDDX	aj8	VDD
c9	VSS	t9	VDDA	aj9	P15_RAN
c10	VDDX	t10	RREF18	aj10	VSS
c11	VDDX	t11	VSS	aj11	P15_RBN
c12	VDDA	t12	NO BALL	aj12	VSS
				,	

c13	VDDX	t13	NO BALL	aj13	P15_RCN
c14	VDDX	t14	VDD	aj14	VSS
c15	VSS	t15	VDD	aj15	P15_RDN
c16	VSS	t16	VDD	aj16	VDD
c17	VSS	t17	VDD	aj17	P09_RAN
c18	VDDX	t18	VDD	aj18	VSS
c19	VDDX	t19	VDD	aj19	P09_RBN
c20	VDDA	t20	VDD	aj20	VSS
c21	VDDX	t21	VDD	aj21	P09_RCN
c22	VDDX	t22	VDD	aj22	VSS
c23	VSS	t23	VDD	aj23	P09_RDN
c24	VSS	t24	VDD	aj24	VDD
c25	VSS	t25	VDD	aj25	P05_RAN
c26	VDDX	t26	VDD	aj26	VSS
c27	VDDX	t27	NO BALL	aj27	P05_RBN
c28	VDDA	t28	NO BALL	aj28	VSS
c29	VDDX	t29	LED_DATA1	aj29	P05_RCN
c30	VDDX	t30	NC	aj30	VSS
c31	VSS	t31	TESTMODE	aj31	P05_RDN
c32	VSS	t32	ADDR[2]	aj32	VDD
c33	VSS	t33	ADDR[3]	aj33	DIODE_OUT
c34	VDDX	t34	ADDR[4]	aj34	VDD
c35	VDDX	t35	ADDR[5]	aj35	P01_RCN
c36	VDDA	t36	ADDR[6]	aj36	P01_RCP
c37	VDDX	t37	ADDR[7]	aj37	VDDX
c38	VDDX	t38	ADDR[8]	aj38	P01_TCN
c39	VSS	t39	ADDR[9]	aj39	P01_TCP
d1	P20_RDP	u1	P24_TCP	ak1	P21_RAP
d2	VTT20	u2	P24_TCN	ak2	VTT21
d3	P20_RCP	u3	VDDX	ak3	P21_RBP
d4	RREF20	u4	P24_RCP	ak4	RREF21
d5	P20_RBP	u5	P24_RCN	ak5	P21_RCP
d6	VTT20	u6	VSS	ak6	VTT21
d7	P20_RAP	u7	P18_TCP	ak7	P21_RDP
d8	VDD	u8	P18_TCN	ak8	VDD
d9	P14_RDP	u9	VDDX	ak9	P15_RAP
d10	VTT14	u10	P18_RCP	ak10	VTT15
d11	P14_RCP	u11	P18_RCN	ak11	P15_RBP
d12	RREF14	u12	NO BALL	ak12	RREF15
d13	P14_RBP	u13	NO BALL	ak13	P15_RCP
d14	VTT14	u14	VDD	ak14	VTT15
d15	P14_RAP	u15	VDD	ak15	P15_RDP
d16	VDD	u16	VDD	ak16	VDD
d17	P12_RDP	u17	VDD	ak17	P09_RAP
d18	VTT12	u18	VDD	ak18	VTT09
d19	P12_RCP	u19	VDD	ak19	P09_RBP
d20	RREF12	u20	VDD	ak20	RREF09
d21	P12_RBP	u21	VDD	ak21	P09_RCP

Fulcrum Confidential

Do Not Reproduce Document: FM2224-DS-0.7 Date: March, 2006

d22	VTT12	u22	VDD	ak22	VTT09
d23	P12_RAP	u23	VDD	ak23	P09_RDP
d24	VDD	u24	VDD	ak24	VDD
d25	P08_RDP	u25	VDD	ak25	P05_RAP
d26	VTT08	u26	VDD	ak26	VTT05
d27	P08_RCP	u27	NO BALL	ak27	P05_RBP
d28	RREF08	u28	NO BALL	ak28	RREF05
d29	P08_RBP	u29	LED_DATA2	ak29	P05_RCP
d30	VTT08	u30	DTACK_N	ak30	VTT05
d31	P08_RAP	u31	ADDR[10]	ak31	P05_RDP
d32	VDD	u32	ADDR[11]	ak32	VDD
d33	P04_RDP	u33	ADDR[12]	ak33	VSS
d34	VTT04	u34	ADDR[13]	ak34	VDD
d35	P04_RCP	u35	ADDR[14]	ak35	VSS
d36	RREF04	u36	ADDR[15]	ak36	RREF01
d37	P04_RBP	u37	ADDR[16]	ak37	VDDA
d38	VTT04	u38	ADDR[17]	ak38	VDDX
d39	P04_RAP	u39	ADDR[18]	ak39	VSS
e1	P20_RDN	v1	VSS	al1	VSS
e2	VSS	v2	VTT24	al2	VDDX
e3	P20_RCN	v3	VDDX	al3	VDDX
e4	VSS	v4	VTT24	al4	VDDA
e5	P20_RBN	v5	VSS	al5	VDDX
e6	VSS	v6	VSS	al6	VDDX
e7	P20_RAN	v7	VSS	al7	VSS
e8	VDD	v8	VTT18	al8	VSS
e9	P14_RDN	v9	VDDX	al9	VSS
e10	VSS	v10	VTT18	al10	VDDX
e11	P14_RCN	v11	VSS	al11	VDDX
e12	VSS	v12	NO BALL	al12	VDDA
e13	P14_RBN	v13	NO BALL	al13	VDDX
e14	VSS	v14	VSS	al14	VDDX
e15	P14_RAN	v15	VSS	al15	VSS
e16	VDD	v16	VSS	al16	VSS
e17	P12_RDN	v17	VSS	al17	VSS
e18	VSS	v18	VSS	al18	VDDX
e19	P12_RCN	v19	VSS	al19	VDDX
e20	VSS	v20	VSS	al20	VDDA
e21	P12_RBN	v21	VSS	al21	VDDX
e22	VSS	v22	VSS	al22	VDDX
e23	P12_RAN	v23	VSS	al23	VSS
e24	VDD	v24	VSS	al24	VSS
e25	P08_RDN	v25	VSS	al25	VSS
e26	VSS	v26	VSS	al26	VDDX
e27	P08_RCN	v27	NO BALL	al27	VDDX
e28	VSS	v28	NO BALL	al28	VDDA
e29	P08_RBN	v29	LED_EN	al29	VDDX
e30	VSS	v30	DERR_N	al30	VDDX

					_
e31	P08_RAN	v31	NC	al31	VSS
e32	VDD	v32	NC	al32	VSS
e33	P04_RDN	v33	ADDR[19]	al33	VSS
e34	VSS	v34	ADDR[20]	al34	VDD
e35	P04_RCN	v35	ADDR[21]	al35	P01_RBN
e36	VSS	v36	ADDR[22]	al36	P01_RBP
e37	P04_RBN	v37	ADDR[23]	al37	VDDX
e38	VSS	v38	VSS	al38	P01_TBN
e39	P04_RAN	v39	VSS	al39	P01_TBP
f1	VSS	w1	P24_TDP	am1	P21_TAN
f2	VSS	w2	P24_TDN	am2	VTT21
f3	VSS	w3	VSS	am3	P21_TBN
f4	VDD	w4	P24_RDP	am4	VDDX
f5	VDD	w5	P24_RDN	am5	P21_TCN
f6	VDD	w6	VDD	am6	VTT21
f7	VDD	w7	P18_TDP	am7	P21_TDN
f8	VDD	w8	P18_TDN	am8	VSS
f9	VDD	w9	VSS	am9	P15_TAN
f10	VSS	w10	P18_RDP	am10	VTT15
f11	VSS	w11	P18_RDN	am11	P15_TBN
f12	VSS	w12	NO BALL	am12	VDDX
f13	VSS	w13	NO BALL	am13	P15_TCN
f14	VSS	w14	VSS	am14	VTT15
f15	VDD	w15	VSS	am15	P15_TDN
f16	VDD	w16	VSS	am16	VSS
f17	VDD	w17	VSS	am17	P09_TAN
f18	VSS	w18	VSS	am18	VTT09
f19	VSS	w19	VSS	am19	P09_TBN
f20	VSS	w20	VSS	am20	VDDX
f21	VSS	w21	VSS	am21	P09_TCN
f22	VSS	w22	VSS	am22	VTT09
f23	VDD	w23	VSS	am23	P09_TDN
f24	VDD	w24	VSS	am24	VSS
f25	VDD	w25	VDD33	am25	P05_TAN
f26	VSS	w26	VDD33	am26	VTT05
f27	VSS	w27	NO BALL	am27	P05_TBN
f28	VSS	w28	NO BALL	am28	VDDX
f29	VSS	w29	VSS	am29	P05_TCN
f30	VSS	w30	VSS	am30	VTT05
f31	VDD	w31	VSS	am31	P05_TDN
f32	VDD	w32	NC	am32	VSS
f33	VDD	w33	IGN_PAR	am33	VSS
f34	VDD	w34	CS_N	am34	VDD
f35	VDD	w35	AS_N	am35	VSS
f36	VDD	w36	INTR_N	am36	VTT01
f37	VSS	w37	AUTOBOOT	am37	VDDX
f38	VSS	w38	VDD33	am38	VTT01
f39	VSS	w39	VDD33	am39	VSS

Fulcrum Confidential

Do Not Reproduce Document: FM2224-DS-0.7 Date: March, 2006

g1	P22_TDP	y1	VSS	an1	P21_TAP
g2	VSS	y2	VSS	an2	VSS
g3	P22_TCP	у3	VSS	an3	P21_TBP
g4	VSS	y4	VDD	an4	VSS
g5	P22_TBP	y5	VDD	an5	P21_TCP
g6	VSS	y6	VDD	an6	VSS
g7	P22_TAP	у7	VSS	an7	P21_TDP
g8	VSS	y8	VSS	an8	VSS
g9	P16_TDP	y9	VSS	an9	P15_TAP
g10	VSS	y10	VSS	an10	VSS
g11	P16_TCP	y11	VSS	an11	P15_TBP
g12	VSS	y12	NO BALL	an12	VSS
g13	P16_TBP	y13	NO BALL	an13	P15_TCP
g14	VSS	y14	VDD	an14	VSS
g15	P16_TAP	y15	VDD	an15	P15_TDP
g16	VSS	y16	VDD	an16	VSS
g17	P10_TDP	y17	VDD	an17	P09_TAP
g18	VSS	y18	VDD	an18	VSS
g19	P10_TCP	y19	VSS	an19	P09_TBP
g20	VSS	y20	VSS	an20	VSS
g21	P10_TBP	y21	VSS	an21	P09_TCP
g22	VSS	y22	VDD	an22	VSS
g23	P10_TAP	y23	VDD	an23	P09_TDP
g24	VSS	y24	VDD	an24	VSS
g25	P06_TDP	y25	VDD33	an25	P05_TAP
g26	VSS	y26	VDD33	an26	VSS
g27	P06_TCP	y27	NO BALL	an27	P05_TBP
g28	VSS	y28	NO BALL	an28	VSS
g29	P06_TBP	y29	VSS	an29	P05_TCP
g30	VSS	y30	EBI_RESET_N	an30	VSS
g31	P06_TAP	y31	VSS	an31	P05_TDP
g32	VSS	y32	NC	an32	VSS
g33	VSS	y33	RXRDY	an33	VSS
g34	VDD	y34	TXRDY	an34	VDD
g35	P02_RDN	y35	RXEOT	an35	P01_RAN
g36	P02_RDP	y36	RW_N	an36	P01_RAP
g37	VSS	y37	CLK_EBI	an37	VSS
g38	P02_TDN	y38	VDD33	an38	P01_TAN
g39	P02_TDP	y39	VDD33	an39	P01_TAP
h1	P22_TDN	aa1	P23_TAP	ap1	VSS
h2	VTT22	aa2	P23 TAN	ap2	VSS
h3	P22_TCN	aa3	VSS	ap3	VSS
h4	VDDX	aa4	P23_RAP	ap4	VDD
h5	P22_TBN	aa5	P23 RAN	ap5	VDD
h6	VTT22	aa6	VDD	ap6	VDD
h7	P22_TAN	aa7	P17_TAP	ap7	VDD
h8	VSS	aa8	P17_TAN	ap8	VDD
h9	P16_TDN	aa9	VSS	ap9	VDD
	··-·			-1-2	

_			Dulu OI			
	h10	VTT16	aa10	P17_RAP	ap10	VSS
	h11	P16_TCN	aa11	P17_RAN	ap11	VSS
	h12	- VDDX	aa12	NO BALL	ap12	VSS
	h13	P16_TBN	aa13	NO BALL	ap13	VSS
	h14	VTT16	aa14	VSS	ap14	VSS
	h15	P16_TAN	aa15	VSS	ap15	VDD
	h16	VSS	aa16	VSS	ap16	VDD
	h17	P10_TDN	aa17 aa17	VSS	ap17	VDD
	h18	VTT10	aa18	VSS	ap18	VSS
	h19	P10_TCN	aa19	VSS	ap19	VSS
	h20	VDDX	aa20	VSS	ap20	VSS
	h21	P10_TBN	aa21	VSS	ap20	VSS
	h22	VTT10	aa22	VSS	ap22	VSS
	h23	P10_TAN	aa23	VSS	ap22 ap23	VDD
	h24	VSS	aa24	VSS	ap24	VDD
	h25	P06_TDN	aa25	VDD33	ap25	VDD
	h26	VTT06	aa26	VDD33	ap26	VSS
	h27	P06 TCN	aa20 aa27	NO BALL	ap20 ap27	VSS
	h28	VDDX	aa28	NO BALL	ap28	VSS
	h29	P06_TBN	aa20 aa29	VSS	ap20 ap29	VSS
	h30	VTT06	aa29 aa30	VSS	ap29 ap30	VSS
	h31		aa30 aa31	VSS		VDD
	h32	P06_TAN VSS	aasi aa32	NC	ap31	VDD
					ap32	
	h33	VSS	aa33	DTACK_INV	ap33	VDD
	h34	VDD	aa34	PAR[0]	ap34	VDD
	h35	VSS	aa35	PAR[1]	ap35	VDD
	h36	VTT02	aa36	PAR[2]	ap36	VDD
	h37	VDDX	aa37	PAR[3]	ap37	VSS
	h38	VTT02	aa38	VDD33	ap38	VSS
	h39	VSS	aa39	VDD33	ap39	VSS
	j1	VSS	ab1	VSS	ar1	P19_RAN
	j2	VDDX	ab2	VTT23	ar2	VSS
	j3	VDDX	ab3	VDDX	ar3	P19_RBN
	j4 	VDDA	ab4	VTT23	ar4	VSS
	j5	VDDX	ab5	VSS	ar5	P19_RCN
	j6	VDDX	ab6	VSS	ar6	VSS
	j7	VSS	ab7	VSS	ar7	P19_RDN
	j8	VSS	ab8	VTT17	ar8	VDD
	j9	VSS	ab9	VDDX	ar9	P13_RAN
	j10	VDDX	ab10	VTT17	ar10	VSS
	j11	VDDX	ab11	VSS	ar11	P13_RBN
	j12	VDDA	ab12	NO BALL	ar12	VSS
	j13	VDDX	ab13	NO BALL	ar13	P13_RCN
	j14	VDDX	ab14	VSS	ar14	VSS
	j15	VSS	ab15	VSS	ar15	P13_RDN
	j16	VSS	ab16	VSS	ar16	VDD
	j17	VSS	ab17	VSS	ar17	P11_RAN
	j18	VDDX	ab18	VSS	ar18	VSS

Fulcrum Confidential

Do Not Reproduce Document: FM2224-DS-0.7 Date: March, 2006

j19	VDDX	ab19	VSS	ar19	P11_RBN
j20	VDDA	ab20	VSS	ar20	VSS
j21	VDDX	ab21	VSS	ar21	P11_RCN
j22	VDDX	ab22	VSS	ar22	VSS
j23	VSS	ab23	VSS	ar23	P11_RDN
j24	VSS	ab24	VSS	ar24	VDD
j25	VSS	ab25	VSS	ar25	P07_RAN
j26	VDDX	ab26	VSS	ar26	VSS
j27	VDDX	ab27	NO BALL	ar27	P07_RBN
j28	VDDA	ab28	NO BALL	ar28	VSS
j29	VDDX	ab29	VDDA33	ar29	P07_RCN
j30	VDDX	ab30	TDI	ar30	VSS
j31	VSS	ab31	NC	ar31	P07_RDN
j32	VSS	ab32	NC	ar32	VDD
j33	VSS	ab33	DATA[0]	ar33	P03_RAN
j34	VDD	ab34	DATA[1]	ar34	VSS
j35	P02_RCN	ab35	DATA[2]	ar35	P03_RBN
j36	P02_RCP	ab36	DATA[3]	ar36	VSS
j37	VDDX	ab37	DATA[4]	ar37	P03_RCN
j38	P02_TCN	ab38	VSS	ar38	VSS
j39	P02_TCP	ab39	VSS	ar39	P03_RDN
k1	P22_RDP	ac1	P23_TBP	at1	P19_RAP
k2	VTT22	ac2	P23_TBN	at2	VTT19
k3	P22_RCP	ac3	VDDX	at3	P19_RBP
k4	RREF22	ac4	P23_RBP	at4	RREF19
k5	P22_RBP	ac5	P23_RBN	at5	P19_RCP
k6	VTT22	ac6	VSS	at6	VTT19
k7	P22_RAP	ac7	P17_TBP	at7	P19_RDP
k8	VDD	ac8	P17_TBN	at8	VDD
k9	P16_RDP	ac9	VDDX	at9	P13_RAP
k10	VTT16	ac10	P17_RBP	at10	VTT13
k11	P16_RCP	ac11	P17_RBN	at11	P13_RBP
k12	RREF16	ac12	NO BALL	at12	RREF13
k13	P16_RBP	ac13	NO BALL	at13	P13_RCP
k14	VTT16	ac14	VDD	at14	VTT13
k15	P16_RAP	ac15	VDD	at15	P13_RDP
k16	VDD	ac16	VDD	at16	VDD
k17	P10_RDP	ac17	VDD	at17	P11_RAP
k18	VTT10	ac18	VDD	at18	VTT11
k19	P10_RCP	ac19	VDD	at19	P11_RBP
k20	RREF10	ac20	VDD	at20	RREF11
k21	P10_RBP	ac21	VDD	at21	P11_RCP
k22	VTT10	ac22	VDD	at22	VTT11
k23	P10_RAP	ac23	VDD	at23	P11_RDP
k24	VDD	ac24	VDD	at24	VDD
k25	P06_RDP	ac25	VDD	at25	P07_RAP
k26	VTT06	ac26	VDD	at26	VTT07
k27	P06_RCP	ac27	NO BALL	at27	P07_RBP

			moor		
k28	RREF06	ac28	NO BALL	at28	RREF07
k29	P06_RBP	ac29	RW_INV	at29	P07_RCP
k30	VTT06	ac30	тск	at30	VTT07
k31	P06_RAP	ac31	DATA[5]	at31	P07_RDP
k32		ac32	DATA[6]	at32	- VDD
k33		ac33	DATA[7]	at33	P03_RAP
k34		ac34	DATA[8]	at34	VTT03
k35		ac35	DATA[9]	at35	P03_RBP
k36		ac36	DATA[10]	at36	RREF03
k37		ac37	DATA[11]	at37	P03_RCP
k38		ac38	DATA[12]	at38	VTT03
k39		ac39	DATA[13]	at39	P03 RDP
11	P22 RDN	ad1	VSS	au1	VSS
12	VSS	ad2	VDDX	au2	VDDX
13	P22_RCN	ad3	VDDA	au3	VDDX
14	VSS	ad4	RREF23	au4	VDDA
15	P22_RBN	ad5	VSS	au5	VDDX
16	VSS	ad6	VSS	au6	VDDX
17	P22_RAN	ado ad7	VSS	au7	VSS
18	VDD	ad8	VDDX	au8	VSS
19	P16_RDN	ad9	VDDA	au9	VSS
13	VSS	ad3 ad10	RREF17	au10	VDDX
110	P16_RCN	ad10 ad11	VSS	au10 au11	VDDX
112	VSS	ad11 ad12	NO BALL	au11 au12	VDDA
112		ad12 ad13	NO BALL	au12 au13	VDDA
113	P16_RBN VSS	ad13 ad14	VDD	au13 au14	VDDX
115	P16_RAN	ad15	VDD	au15	VSS
116	VDD	ad16	VDD	au16	VSS
117	P10_RDN	ad17	VDD	au17	VSS
118	VSS	ad18	VDD	au18	VDDX
119	P10_RCN	ad19	VDD	au19	VDDX
120	VSS	ad20	VDD	au20	VDDA
121	P10_RBN	ad21	VDD	au21	VDDX
122	VSS	ad22	VDD	au22	VDDX
123	P10_RAN	ad23	VDD	au23	VSS
124	VDD	ad24	VDD	au24	VSS
125	P06_RDN	ad25	VDD	au25	VSS
126	VSS	ad26	VDD	au26	VDDX
127	P06_RCN	ad27	NO BALL	au27	VDDX
128	VSS	ad28	NO BALL	au28	VDDA
129	P06_RBN	ad29	FH_PLL_CLKOUT	au29	VDDX
130	VSS	ad30	TRST_N	au30	VDDX
131	P06_RAN	ad31	DATA[14]	au31	VSS
132	VDD	ad32	DATA[15]	au32	VSS
133	VSS	ad33	DATA[16]	au33	VSS
134	VDD	ad34	DATA[17]	au34	VDDX
135	P02_RBN	ad35	DATA[18]	au35	VDDX
136	P02_RBP	ad36	DATA[19]	au36	VDDA

137	VDDX	ad37	DATA[20]	au37	VDDX
138	P02_TBN	ad38	DATA[21]	au38	VDDX
139	P02_TBP	ad39	DATA[22]	au39	VSS
m1	VSS	ae1	P23_TCP	av1	P19_TAN
m2	VSS	ae2	P23_TCN	av2	VTT19
m3	VSS	ae3	VDDX	av3	P19_TBN
m4	VDD	ae4	P23_RCP	av4	VDDX
m5	VDD	ae5	P23_RCN	av5	P19_TCN
m6	VDD	ae6	VSS	av6	VTT19
m7	VDD	ae7	P17_TCP	av7	P19_TDN
m8	VDD	ae8	P17_TCN	av8	VSS
m9	VDD	ae9	VDDX	av9	P13_TAN
m10	VDD	ae10	P17_RCP	av10	VTT13
m11	VDD	ae11	P17_RCN	av11	P13_TBN
m12	VSS	ae12	NO BALL	av12	VDDX
m13	VSS	ae13	NO BALL	av13	P13_TCN
m14	VSS	ae14	VSS	av14	VTT13
m15	NO BALL	ae15	VSS	av15	P13_TDN
m16	NO BALL	ae16	VSS	av16	VSS
m17	NO BALL	ae17	VDD	av17	P11_TAN
m18	NO BALL	ae18	VDD	av18	VTT11
m19	NO BALL	ae19	VSS	av19	P11_TBN
m20	NO BALL	ae20	VSS	av20	VDDX
m21	NO BALL	ae21	VSS	av21	P11_TCN
m22	NO BALL	ae22	VDD	av22	VTT11
m23	NO BALL	ae23	VDD	av23	P11_TDN
m24	NO BALL	ae24	VSS	av24	VSS
m25	NO BALL	ae25	VSS	av25	P07_TAN
m26	VSS	ae26	VSS	av26	VTT07
m27	VSS	ae27	NO BALL	av27	P07_TBN
m28	VSS	ae28	NO BALL	av28	VDDX
m29	VSS	ae29	FH_PLL_REFCLK	av29	P07_TCN
m30	VSS	ae30	TMS	av30	VTT07
m31	VSS	ae31	DATA[23]	av31	P07_TDN
m32	VSS	ae32	DATA[24]	av32	VSS
m33	VSS	ae33	DATA[25]	av33	P03_TAN
m34	VSS	ae34	DATA[26]	av34	VTT03
m35	VSS	ae35	DATA[27]	av35	P03_TBN
m36	VTT02	ae36	DATA[28]	av36	VDDX
m37	VDDX	ae37	DATA[29]	av37	P03_TCN
m38	VTT02	ae38	DATA[30]	av38	VTT03
m39	VSS	ae39	DATA[31]	av39	P03_TDN
n1	P24_TAP	af1	VSS	aw1	P19_TAP
n2	P24_TAN	af2	VTT23	aw2	VSS
n3	VSS	af3	VDDX	aw3	P19_TBP
n4	P24_RAP	af4	VTT23	aw4	VSS
n5	P24_RAN	af5	VSS	aw5	P19_TCP
n6	VDD	af6	VDD	aw6	VSS

n	7	P18_TAP	af7	VSS	aw7	P19_TDP
n	8	P18_TAN	af8	VTT17	aw8	VSS
n	9	VSS	af9	VDDX	aw9	P13_TAP
n	10	P18_RAP	af10	VTT17	aw10	VSS
n	11	P18_RAN	af11	VSS	aw11	P13_TBP
n	12	VDDX	af12	VDDX	aw12	VSS
n	13	RCK4AP	af13	RCK3AP	aw13	P13_TCP
n	14	RCK4BP	af14	RCK3BP	aw14	VSS
n	15	NO BALL	af15	VSS	aw15	P13_TDP
n	16	NO BALL	af16	VSS	aw16	VSS
n	17	NO BALL	af17	VDD	aw17	P11_TAP
n	18	NO BALL	af18	VDD	aw18	VSS
n	19	NO BALL	af19	VSS	aw19	P11_TBP
n	20	NO BALL	af20	VSS	aw20	VSS
n	21	NO BALL	af21	VSS	aw21	P11_TCP
n	22	NO BALL	af22	VDD	aw22	VSS
n	23	NO BALL	af23	VDD	aw23	P11_TDP
n	24	NO BALL	af24	VSS	aw24	VSS
n	25	NO BALL	af25	VSS	aw25	P07_TAP
n	26	RCK2BP	af26	RCK1BP	aw26	VSS
n	27	RCK2AP	af27	RCK1AP	aw27	P07_TBP
n	28	VDDX	af28	VDDX	aw28	VSS
n	29	VSS	af29	NC	aw29	P07_TCP
n	30	NC	af30	TDO	aw30	VSS
n	31	CONT_EN	af31	NC	aw31	P07_TDP
n	32	VSS	af32	NC	aw32	VSS
n	33	CHIP_RESET_N	af33	NC	aw33	P03_TAP
n	34	VSS	af34	VSS	aw34	VSS
n	35	P02_RAN	af35	VSS	aw35	P03_TBP
n	36	P02_RAP	af36	VSS	aw36	VSS
n	37	VSS	af37	VSS	aw37	P03_TCP
n	38	P02_TAN	af38	VSS	aw38	VSS
n	39	P02_TAP	af39	VSS	aw39	P03_TDP

Table 184 Package Ball Assignment per Functional Group

To be added.

6.5 Package Dimensions

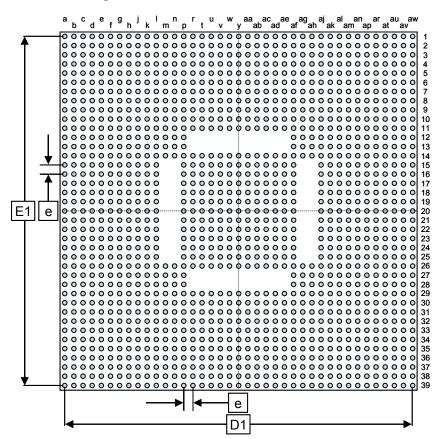
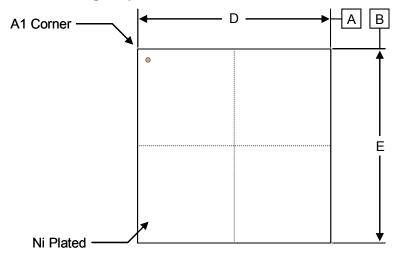
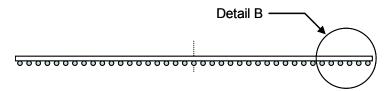




Figure 34 FM2224 Package Top View

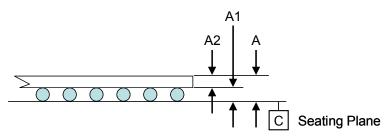


Figure 35 FM2224 Package Side View

Figure 36 Expanded Detail B of Side View

Table 185 Dimensions Used in Figures

Dimensional References						
Reference	Min	Nom	Max			
А	1.25	1.45	1.65			
A1	0.40	0.50	0.60			
A2	0.85	0.95	1.05			
D	39.80	40.00	40.20			
D1	38.0 BSC					
E	39.80	40.00	40.20			
E1	38.0 BSC					
е	1.00 BSC					
М	39					
N	1433					
Ref.: JEDEC MS-034 B						

Notes:

- 1. All dimensions are in millimeters.
- "e" represents the basic solder ball grid pitch.
- "M" represents the basic solder ball matrix size, and symbol "N" is the maximum allowable number of balls after depopulating.
- Primary datum C and Seating Plane are defined by the spherical crowns of the solder balls.

Package surface is Ni plated.

Black spot (or circular etch) for pin 1 identification.

Dimensioning and tolerancing per ASME Y14.5M 1994

6.6 Recommended Heat Sink Vendors

It is anticipated that a heat sink will be required for many applications. Fulcrum has qualified a list of heat sink vendors for the FM2224's BGA package.

Recommended airflow is 200f/min, with a heat sink measuring 40mm (w) x 40mm (h).

 Table 186
 Alphabetical Listing of BGA Heat Sink Vendors

Vendors	Location	Phone
Aavid Thermal Technology	Laconia, NH	(603) 527-2152
Chip Coolers	Warwick, RI	(800) 227-0254
IERC	Burbank, CA	(818) 842-7277
R-Theta	Buffalo, NY	(800) 388-5428
Sanyo Denki	Torrance, CA	(310) 783-5400
Thermalloy	Dallas, TX	(214) 243-4321
Wakefield Engineering	Wakefield, MA	(617) 246-0874

7.0 Document Revision History

To be added, after the 1.0 version of the data sheet is published.