
Application for the emulation of PingER on Android
Devices

Aditya Pan
Department of CSE, ASET

Amity University
Noida, UP, India

pan.aditya93@gmail.com

Prof. (Dr.) Abhay Bansal
Department of CSE, ASET

Amity University
Noida, UP, India

abansal1@amity.edu

Prof. (Dr.) Bebo White
SLAC National Accelerator

Laboratory
Stanford, CA, USA

bebo@slac.stanford.edu

Abstract— PingER is an end to end internet performance

measurement tool. It was originally developed by the Stanford
Linear Accelerator Centre as an IEPM tool. It is used as a tool to
test the Digital Divide from an internet performance viewpoint.
PingER measurements are done by measurement agents (MA) in
approximately 60 sites in around 20 countries. A number of hosts
are setup globally for target measurement purposes, and there are
roughly 700 sites in over 160 countries dedicated to the same.
However using a desktop machine for the purpose causes a
massive power drain of around 100W an hour per machine. This
paper discusses the implementation of an Android based mobile
application to be used as a pingER monitoring agent, through
which the total space and energy requirements can be minimized,
while leveraging the advantages of Android smartphones.

Keywords— Android; Network Monitoring; Ping; PingER;
IEMP Tool

I. INTRODUCTION
A PingER is an IEMP (Internet End to End Performance

Measurement) tool developed by Stanford Accelarated
Reasearch Centre (SLAC). It stands for Ping End-to-End
Reporting and was started to identify the Digital Divide in
terms of internet performance. Digital Divide [1] is a condition
of economic or social inequality with reference to the access,
usage and impact of ICT (Internet Communication
Technologies. PingER provides data for the study of the Digital
Divide on an international scale and through the use of roughly
700 sites in over 100 countries.

PingER measurements are made by aproximately 60
MAs(Measuring Agents). They make measurements to over
700 targets in 160 countires, i.e to an estimated 99% of the
world's connected population. Measuring agents have to be
online 24 x 7 x 365 hours a year. This leads to high usage
costs. The average desktop computer has a wattage of 80-250,
depending on non-essential peripherals and components
installed. The cost to operate a typical computer and monitor
system of 130 watts keeping in mind the uptime requirements
of an MA is $129.73 [12]. The operating cost of a smartphone
is much lesser and is around $1.36 a year [13]. Moreover a
desktop and peripherals has considerable space requiremnts
when compared to the small and compact size of a smartphone.
This paper proposes an Android application which will attempt
to provide functionality similar to a PingER MA, which is
targeted for the Android Lollipop (5.x) with and has been
compiled using SDK API 22 [16].

The rest of the paper is organized as follows: Section II
discusses the essential workings of PingER project and
Android system pertaining to the paper requirements. Section
III discusses the methodology; the sequence of actions
followed by the prototype and all assumptions that have been
made, and concludes by displaying the prototype. Section IV
presents the outputs and the data obtained through the use of
the application. Section V concludes the paper.

II. BACKGROUND
A. PingER Process

PingER uses measurement agents which will periodically
ping target sites and are responsible for the storage and analysis
of the received data. The data can be used for deriving various
metrics, which can be useful for the purposes of determining
throughput, Voice over Internet Protocol (VoIP), streaming,
haptics and more. Another interesting field this can be used in
is in the determination of the geolocation of a host by sending
pings to it from well-known landmarks [3].

1) Measurement Process of a MA

PingER uses the ping program [18] to send ICMP (Internet
Control Messages Protocol) packets to a remote target and
processes the response or unresponsiveness of the target.

PingER measurements are made by aproximately 60
MAs(Measuring Agents). They make measurements to over
700 targets in 160 countires, i.e to an estimated 99% of the
world's connected population. The measurement is done in
cycles of roughly 30 minute intervals. In each cycle, a MA will
issue a 100 byte and a 1000 byte ping request to each target
host in the list belonging to the concerned MA(7). The MA
will stop sending ping requests when either following condition
holds true:-

a) The MA has received 10 ping responses.

b) The MA has sent 30 ping requests.

Therefore Ping responses are recorded as N, where
0<=N<=10

2) Measurement Metrics

The received data is recorded and archived, where a
particular entry exists for each set of pings from a MA to a
particular target. The recorded data for any ping set consists of:

the MA name and its IP address; the target names and IP
addresses; a time-stamp; the number of bytes in the ping
request; the number of ping requests and responses (N); the
minimum Round Trip Time (RTT) (Min_RTT), the average
RTT (Avg_RTT) and maximum RTT (Max_RTT) of the N
ping responses; followed by the N ping sequence numbers,
followed by the N RTTs [6].

From the N RTTs we derive various metrics - including:
minimum ping RTT; average RTT; maximum RTT; loss; and
reachability (host is unreachable in case of 100 % packet loss);
standard deviation (stdev) of RTTs, 25% probability (first
quartile) of RTT; 75% probability (third quartile) of RTT; Inter
Quartile Range (IQR). We also derive the Inter Packet delay
(IPD) and the Inter Packet Delay Variability (IPDV) as the IQR
of the IPDs [5][7].

B. Android System
Android is currently the largest smartphone operating

system in the world with an estimated 79 % market share [15].
The system is based on Linux but has been heavily modified to
overcome the limitations of mobile devices including limited
battery and screen size. This paper is mainly concerned with
certain components of the system;

1) Android Kernel

The Android Kernel directly uses one of the branches of the
Linux Long Term Support (LTS). As of April 2014, 3.4 or 3.10
are mostly used versions of the Linux Kernel in use The
Android Kernel however has many architectural changes
outside the typical development cycle of Linux. Google’s
variant of the kernel has several architectural changes, such as
out-of-memory handling (OOM), logger, wakelocks and more
[10].

Many middleware, libraries and APIs written in C, along
with application framework along with Apache Harmony based
Java-compatible libraries running application software exist on
top of the kernel.

2) Features of various Android Versions

• Dalvik

Pre-Lollipop (version 5.x) versions of Android had Dalvik
as a process virtual machine, along with trace-based JIT (Just
In Time Compilation), which was used to execute dex-code
translated from bytecode. Additionally, Dalvik had to compile
and natively executed of frequently used code selectively,
called “traces” upon every application launch instance [11].

• Android Runtime (ART)

Launched originally in Android version 4.4 (Kitkat) and
used by default since Lollipop, this new environment was
introduced by Android, which directly converts bytecode to
machine code upon application installation or AOT (Ahead of
Time compilation).

3) Security in Android

 By default an application cannot perform operations that
will significantly impact the operating system, user or other
applications. This pertains to user data such as contacts, emails

or even application files. Each application is executed in its
own process sandbox. Some basic features are provided by
each sandbox, however additional features require explicitly
stating so in the application manifest, and the user is prompted
for the same during installation. The “permissions” needed
have to be explicitly declared and Android system requests the
user for consent.

4) Rooting

In Android it is possible to get in-application access to the
Linux kernel, provided the concerned phone has been rooted.
Rooting allows us to bypass Android security protocols [17]
which will prevent the application from working, since ping
requests will be blocked. Rooting poses a security risk in terms
of integrity and privacy of user data, but is justified on the
grounds that PingER provides full public access to all data and
metrics and the phone can be setup with dummy accounts.

III. METHODOLOGY AND EXPERIMENTAL SETUP
The application is designed to behave as a PingER

Measuring Agent to meet the need of lesser power
consumption and space consumption.

A. Model Process Flow
 The process flow has been kept very similar to the logic of
the pingER software, and is summarised in a flowchart as
shown in figure 1.

Figure 1: Process flow of Model

B. Assumptions and Simplifications
 Certain assumptions have been made to ensure the proper
functioning of the application prototype, and also certain
simplifications have been made to make the process work
without exceptions or failures being explicitly handled.

a) Device is connected to the internet using a reliable
and stable connection.

b) Device has charge or is connected to the charger.
c) The device is running Android 4.0 or above.
d) The phone is rooted, either through special software

or through custom ROMs.
e) The application has been granted root acces.
f) Neither the internet connection nor the power ever

fails.

g) The number of target sites has been reduced to 7 but
can be scaled up.

C. Environment Setup
 For the purpose of the paper, certain tools have been used
to create, design and test the application. The following is the
list of tools used for the purpose

a) Android Studio 1.4 with compiler SDK version API
22 and minimum SDK version being API 15 [16].

b) Java Development Kit 1.8 [15].

c) Xiaomi Redmi 1s [8] with a custom ROM
(Resurrection Remix) [14] as the test device.

d) The application has been made on a desktop computer
which has an i5(haswell), 16Gb of RAM, 128 GB
SSD primary with 1TB HDD secondary. It was
custom assembled and thus has no production name,
with Ubuntu 14.04.2 as the default operating system.

D. The Prototype
 The target domain list is stored in a universal location to
allow easy scalability without requiring explicit application
upgrades on all MAs, which would have been required to be
done if the names had been hardcoded into the application.

1) The Target List.

 The prototype requires the target domain names to be
available and to allow easy scalability, the target domain names
have been written and uploaded as a webpage. The webpage
needs to be edited to allow the modification of the target list.
The target domain names are written in tab-delimited format
[17]. The list was chosen arbitrarily to the servers of the
website which the DNS was redirecting to from Delhi, India.

2) The Android Application.

 The application is packaged and installed on the test
android smartphone. The application consists of a button and a
blank listview, which is populated by the target domain names
which are fetched from the website upon application starting.
The list is stored locally as long as the application is running in
the foreground. The application has been kept simple to ensure
ease of use. The application screen-shot is shown in Figure 2.

Figure 2: The Default Screen

 After successful application installation, the domain names
are fetched from the webpage and parsed to a listview format
and presented to the user. The user can use the present “PING”
button to initiate the measurement process. However the
process requires root permission and the the user is requested
to allow root request as shown in Figure 3. The user must
accept this otherwise the application will not function.

Figure 3: Root Permission Request

IV. OUTPUT
Upon application start, the application shall automatically

scan the hardcoded url of the webpage for the list of target
hostnames, and then it will fetch the content of the page, parse
it and if successful will display to the user a message along
with the list of target domain names as show in figure 4.

Figure 4: Successful Fetch of Targets

Upon user request through a button press the process starts
and the target hosts are pinged individually and the individual
requests are recorded in the Android Logcat. After
successful/unsuccessful pings have taken place the data is
stored in the application which can be used for further analysis
if required. The log follows the format of date, time,
application process ID and name, in-application process name,
command executed, domain name, ip address, bytes of data
sent as payload, as shown in figure 5.

11-03 01:37:15.320 12372-
12372/com.adenst.vortex.stanfordapp E/MainActivity: PING
www.google.com (173.194.36.115) 56(84) bytes of data.

Figure 5: Logcat information

 In the application, data can be stored in many ways. The
paper discusses three approaches that have been used.

A. Average RTT
 This is the simplest of all three and was used to test the
initial working of the application, as shown in figure 6. It gives
limited data and not much scope for analysis.

Figure 6: Average RTT data

B. Full RTT specification
 This gives the minimum, average, maximum and the
calculation of the mean deviation in a list format, and can be
used for useful analysis purposes as shown in figure 7. The
average RTT is shown beside the domain name.

Figure 7: Full RTT Specification

C. Packet and RTT Specification
 It allows for the receiving and storage of both packet
information and full RTT specifics. The data is the most
detailed and gives details about packet transmission delays,
packet loss and also RTT information as section 4.2 does, as
shown in figure 8.

Figure 8: Full Packet and RTT Specific

V. CONCLUSION AND FUTURE WORK
The application has been designed with an aim to emulate

the activity of PingER software and hopes to be more space
efficient and power efficient. Eventually this hopes to replace
all desktop MAs and act as the most power efficient solution to
the entire PingER process.

The design can be expanded to handle unpredictable
situations, and also the data from many MAs may be uploaded
to common servers to allow a central backup repository of the
data. Also the performance of the application needs to be tested
in different conditions.

REFERENCES
[1] Hilbert, M. (2014). Technological information inequality as
an incessantly moving target: The redistribution of information
and communication capacities between 1986 and 2010. Journal
of the Association for Information Science and Technology,
65(4), 821-835.

[2] Norris, P. (2001). Digital divide: Civic engagement,
information poverty, and the Internet worldwide. Cambridge
University Press.

[3] Thorvaldsen, Ø. E. (2006). Geographical location of
internet hosts using a multi-agent system.

[4] Barry, B., Chukwuma, V., Petitdidier, N., Cottrell, L., &
Barton, C. (2008, May). Digital divide in sub-Saharan African
universities: Recommendations and monitoring. In IST-Africa
Conference, Windhoek, Namibia (pp. 7-9)..

[5] Cottrell, R. L., Logg, C., Chhaparia, M., Gngonev, M.,
Haro, F., Nazir, F., & Sandford, M. (2006, April). Evaluation
of techniques to detect significant network performance
problems using End-to-End active network measurements. In
Network Operations and Management Symposium, 2006.
NOMS 2006. 10th IEEE/IFIP (pp. 85-94). IEEE.

[6] Cottrell, R. L., Logg, C., & Mei, I. H. (2003, April).
Experiences and results from a new high performance network
and application monitoring toolkit. In Passive and Active
Measurement Workshop..

[7] Matthews W. and R. L. Cottrell, “The PingER Project:
Active Internet Performance Monitoring for the HENP
Community”, IEEE Communications Magazine, May 2000.

[8] http://www.gsmarena.com/xiaomi_redmi_1s-6373.php

[9] Mukherjee, S., Prakash, J., & Kumar, D. (2015). Android
Application Development & Its Security.

[10] Brady, P. (2008, May). Android anatomy and physiology.
In Google IO developer conference.

[11] Cheng, B., & Buzbee, B. (2010, May). A jit compiler for
android’s dalvik vm. In Google I/O developer conference (Vol.
201, No. 0).

[12] https://www.griffith.edu.au/sustainability/sustainable-
campuses/sustainable-initiatives/energy/average-computer-
energy-usage

[13] http://www.forbes.com/sites/tristanlouis/2013/09/14/the-
real-cost-of-a-smartphone/

[14]http://forum.xda-developers.com/redmi-
1s/development/rom-resurrection-remix-lollipop-v5-3-9-
t3069027

[15]http://www.oracle.com/technetwork/java/javase/downloads
/jdk8-downloads-2133151.html

[16] http://developer.android.com/sdk/index.html

[17] http://www.adenst.com/aditya/

[18] Fall, K. R., & Stevens, W. R. (2011). TCP/IP illustrated,
volume 1: The protocols. addison-Wesley.

