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Determining the EBL using Deep Galaxy 
Surveys 

•  Has the advantage over modeling galaxy SEDs by determining real, 
observationally based error bands on luminosity densities, ρL(λ,z) (Helgason 
et al. 2012; Stecker et al. 2012). 

•  Compliments the Blazar γ-ray Absorption Method (Stecker et al 1992) in 
probing for other potential effects modifying γ-ray spectra: e.g., axions, 
Lorentz invariance violation, secondary components. Can compare our 
galaxy survey method with recent such studies (Ackermann et al. 2012; 
Biteau & Williams 2015). 

•  Does not depend on assuming a  
       blazar source spectrum shape in   
       order to determine the EBL. 

•  Our new work extends our previous 
      studies into the MIR and FIR using 
      surveys from AKARI, Herschel, and Spitzer.  

Herschel 



Goal is to Determine the Opacity of the 
Universe to γ-rays over the Whole Energy 

Range of the Fermi Space Telescope and Air 
Cherenkov Telescopes 

Fermi Space 
Telescope 

Cherenkov Telescope 
Array 



Observations of galaxy luminosity densities at 
UV to NIR wavelengths with 68% confidence 

bands (in gray) derived from Monte Carlo 
treatment of observational errors using a robust 

fitting function in redshift (next 3 slides) . 

Stecker, Malkan & Scully 2012, ApJ 761:128 
Scully, Malkan & Stecker 2014, ApJ 784:138 
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Opacity Upper Limit on the Redshift of 
PKS1424+240  
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New Results on Luminosity Densities 
from Galaxy Surveys from AKARI, 
Spitzer, Herschel allow us to Extend 

our Calculations into the MIR and FIR 



Mid-IR Luminosity Densities 
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Comoving Photon Energy Densities 



Extragalactic Background Light 

Our empirically-based determination of the z = 0 EBL together with lower 
limits from Madau & Pozzetti (2000)[Black Circles] and Xu et al.(2005) 
[Crosses] and upper limits from Gardner et al.(2000).  
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γ-ray Opacity Results 
(Accurate up to Emax = 0.21 λ (µm)/(1+z) TeV 

68% confidence 
bands on γ-ray 
opacity 
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Partial Comparison with Fermi Results  
(Ackermann et al. 2012) 

sources above the critical energy (30). This in
turn depends on a precise description of the
gamma-ray spectra by our source parametriza-
tion. To verify that this is the case and to ex-
clude the possibility that the detected absorption
feature is intrinsic to the gamma-ray sources (17),
we performed the analysis in three independent
redshift intervals (z < 0.2, 0.2 ≤ z < 0.5, and 0.5 ≤
z < 1.6). The deviations from the intrinsic spectra
in the three redshift intervals are displayed in Fig.
2. In the local universe (z < 0.2), EBL absorption
is negligible in most of the Fermi-LAT energy

band (Ecrit ≥ 120 GeV). The lowest redshift in-
terval therefore reveals directly the intrinsic spec-
tra of the sources and shows that our spectral
parametrization is accurate (18). The absorption
feature is clearly visible above the critical energy
in the higher redshift bins. Its amplitude and mod-
ulation in energy evolve with redshift as expected
for EBL absorption. In principle, the observed
attenuation could be due to a spectral cutoff that
is intrinsic to the gamma-ray sources. The absence
of a cutoff in the spectra of sources with z < 0.2
would require that the properties of BLLacs change

with redshift or luminosity. It remains an issue of
debatewhether such evolution exists (31–34). How-
ever, in case itwere present, the intrinsic cutoffwould
be expected to evolve differently with redshift than
we observe. To illustrate this effect, we fitted the
blazar sample assuming that all the sources have an
exponential cutoff at an energy E0. From source
to source, the observed cutoff energy changes be-
cause of the source redshift and because we as-
sumed that blazars as a population are distributed
in a sequence such as that proposed in (31–34).
E0 was fitted to the data globally like b above. As
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Fig. 1. Measurement, at the 68 and 95% confi-
dence levels (including systematic uncertainties
added in quadrature), of the opacity tgg from the
best fits to the Fermi data compared with predic-
tions of EBL models. The plot shows the measure-
ment at z ≈ 1, which is the average redshift of the
most constraining redshift interval (i.e., 0.5 ≤ z <
1.6). The Fermi-LAT measurement was derived com-
bining the limits on the best-fit EBL models. The
downward arrow represents the 95% upper limit on
the opacity at z = 1.05 derived in (13). For clarity,
this figure shows only a selection of the models we
tested; the full list is reported in table S1. The EBL
models of (49), which are not defined for E ≥ 250/
(1 + z) GeV and thus could not be used, are reported
here for completeness.
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68% confidence band for τ = 1 

Fermi highest energy 
photons: red-FSRQs, black-BL 
Lacs, blue-GRBs 

A τ = 1 energy-redshift plot (Fazio & Stecker 1970) showing our uncertainty band results 
compared with the Fermi plot of their highest energy photons from FSRQs (red), BL Lacs 
(black) and and GRBs (blue) vs. redshift (from Abdo et al. 2010). 

Fermi Photons are Within Our Confidence Band τ = 1   
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We are presently extending our results to 250 µm and will also include the 
effect of interactions with the 2.7 K CBR.  

(Fazio & Stecker 1970; Stecker et al. 2006). 

We note that interactions with the CBR dominated over those of the EBL at 
energies above 

Ec ~ 103/(1+z)2 TeV. 

log ! ¼ 12:63 (70 "m) and log ! ¼ 12:27 (160 "m) are from
Dole et al. (2006.)

3. THE OPTICAL DEPTH OF THE UNIVERSE
TO GAMMA RAYS

3.1. The Optical Depth from Interactions
with CMB Microwave Photons

The optical depth of the universe to the CMB is given by

#CMB ¼ 5:00 ; 105
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:11 PeV

E$

s Z z

0

dz0 1þ z0ð Þe% 1:11 PeV=E$ 1þz 0ð Þ2½ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!" þ !m 1þ z0ð Þ3

q

for the condition E$T1:11/ 1þ zð Þ2 PeV, where the interac-
tions involve CMB photons on the Wien tail of the blackbody
spectrum. This is an update of the formula given in Stecker (1969)
using TCMB ¼ 2:73 K, and we have taken a "CDM universe
with h ¼ 0:7. In all of our calculations we use !" ¼ 0:7 and
!m ¼ 0:3.

3.2. The Optical Depth from Interactions with IBL Photons

To this result we add the optical depth of the universe to the
IBL as a function of z, as calculated using the methods described
in SS98 and using our IBL photon spectra as derived in x 2. Fig-
ure 7 shows the relative contributions to the optical depth from
the IBL and the CMB and the total optical depth for a source at a
redshift of 3.

Our results on the optical depth as a function of energy for
various redshifts out to a redshift of 5 are shown in Figures 8 and
9. Our new results predict that the universe will become opaque
to $-rays for sources at the higher redshifts at somewhat lower
$-ray energies than those given in SS98. This is because the newer
deep surveys have shown that there is significant star formation
out to redshifts z ( 6 (Bunker et al. 2004; Bouwens et al. 2006),
greater than the value of zmax ¼ 4 assumed in SS98.

Figure 11 shows the energy-redshift relation giving an optical
depth # ¼ 1 based on our calculations of #(E$; z). This curve is
generated by the intersection of the function #(E$; z) shown in
Figure 10 with the plane defined by the condition log # ¼ 0. At
energies and redshifts above and to the right of this curve the
universe is optically thick to $-rays. Similarly, at energies and
redshifts below and to the left of this curve the universe is op-
tically thin. The first inflection point in the curve is caused by the
far-IR rollover in the metagalactic photon density, as shown in
Figure 4, and the second inflection point is caused by the rollover
in the optical photon density, also as shown in Figure 4.

Fig. 6.—SED of the diffuse background radiation at z ¼ 0. Error bars show
data points; triangles show lower limits from number counts and the inverted
triangle is an upper limit from $-ray observations (see text). The upper and
lower solid lines show our fast evolution and baseline evolution predictions, and
the dotted lines show our extensions into the optical–UV, as described by SS98.
The steeply dropping solid line near 1012 Hz is the spectrum of the CMB.

Fig. 7.—Optical depth of the universe from the IBL (fast evolution case) and
the CMB, as well as the total optical depth as a function of energy for a $-ray
source at a redshift of 3. It can be seen that the contribution to the optical depth
from the IBL dominates at lower $-ray energies, and that from the CMB photons
dominates at the higher energies. The dashed curve is for the IBL contribution
alone and the dotted curve is for the CMB contribution alone.

Fig. 8.—Optical depth of the universe to $-rays from interactions with pho-
tons of the IBL and CMB for $-rays having energies up to 100 TeV. This is given
for a family of redshifts from 0.03 to 5 as indicated. The solid lines are for the
fast evolution IBL cases, and the dashed lines are for the baseline IBL cases.
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