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Qutline

The Dawn (i.e., the origin of non-thermal emission in blazar jets):

magnetic reconnection as the accelerator of non-thermal particles

*The Sunset (i.e., the fate of TeV photons from distant blazars):

blazar-induced plasma instabilities in the intergalactic medium



The PIC method

Move particles under
Lorentz force

EM fields
/ on the grid
Interpolate EM fields on y . ¢ ..: Deposit current from
the grid to the particles in N L particle motion in the
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Spatial Domain

Solve for EM fields on the
grid

@No approximations, full plasma physics of ions and electrons

eTiny length-scales (c/wp) and time-scales (wp') need to be resolved: Wy = \/

huge simulations, limited time coverage

* Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman 93, Spitkovsky 05, LS+ 13,14)
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Powerful emission and hard spectra
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Internal dissipation in blazar jets

BL Lac
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Internal Dissipation:
Shocks or Reconnection?

Internal shocks in blazars:
e trans-relativistic (yo~a few)

e magnetized (0>0.01)

e toroidal field around the jet —
field L to the shock normal




Shocks: no turbulence — no acceleration
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No “returning” particles — No self-generated turbulence 09,11)

No self-generated turbulence — No particle acceleration

Strongly magnetized (o>10-3) quasi-perp Yo>1 shocks are poor particle accelerators:

B, o is large — particles slide along field lines
0 is large — particles cannot outrun the shock

unless v>c (“superluminal” shock)

— Fermi acceleration is generally suppressed



Relativistic magnetic reconnection

E=vAB

reconnection
electric field
0

Accretion
Disk

Accretion

Disk Black

Hole

Relativistic Reconnection o = > ] VA~ C

Can relativistic reconnection self-consistently produce non-thermal particles?




Dynamics and particle spectrum



Hierarchical reconnection
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» Reconnection is a hierarchical process of island formation and merging (e.g., Uzdensky 10).

* The field energy is transferred to the particles at the X-points, in between the magnetic islands.



Hierarchical reconnection

0=10 electron-positron

2D o=10 with no guide field w, 1=45
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e The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+ 09,
Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).
* The field energy is transferred to the particles at the X-points, in between the magnetic islands.

* Localized regions exist at the X-points where E>B.



The particle energy spectrum —

0=10 electron-positron —
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* The normalization increases, as more
and more particles enter the current
sheet.

* The mean particle energy in the current
10000 sheet reaches ~o/4

— rough energy equipartition

 The max energy grows as ymax«t

(compare to ymax>t'? in shocks).

(LS &
Spitkovsky 14)



3D 0=10 reconnection with no quide field

* In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
* The drift-kink mode is the fastest to grow, but the physics at late times is governed by the
tearing mode, as in 2D.



3D: particle spectrum —

0=10 electron-positron
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e At late times, the particle
spectrum approaches a power-
law tail of slope p~2, extending in
time to higher and higher
energies. The same as in 2D.

""" 2D in-plane| -

* The maximum energy grows as
Ymax 1. The inflow speed /
reconnection rate is v, /c~ 0.02 in
3D (vs v,./c ~ 0.1in 2D).

(LS & Spitkovsky
14)




The highest energy particles
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Two acceleration phases: (1) at the X-point; (2) in between merging islands

Density




(1) Acceleration at X-points
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* In cold plasmas, the particles are tied to field lines and they go through X-points.

e The particles are accelerated by the reconnection electric field at the X-points, and then
advected into the nearest magnetic island.

* The energy gain can vary, depending on where the particles interact with the sheet.



Implications for blazar emission
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(1) Relativistic reconnection is efficient
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Blazar phenomenology:

* blazars are efficient emitters (radiated
power ~ 10% of jet power)

frec

(Sironi+ 15)
Relativistic reconnection:

v it transfers up to ~ 50% of flow energy
(electron-positron plasmas) or up to ~ 25%
(electron-proton) to the emitting particles




(2) Equipartition of particles and fields
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Blazar phenomenology: Relativistic reconnection:

* rough energy equipartition between emitting ¥ in the magnetic islands, it naturally results

particles and magnetic field In rough energy equipartition between
particles and magnetic field



(3) Extended non-thermal distributions
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Blazar phenomenology:
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(LS & Spitkovsky 14, confirmed by Guo+ 14,15, Werner+ 14)

Relativistic reconnection:

v it produces extended non-thermal tails

» extended power-law distributions of the
of accelerated particles, whose power-law

emitting particles, with hard

dn

T —p
dry =

slope

pS2

slope is harder than p=2 for high
magnetizations (0>10)



The sunset of TeV photons
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TeV photons are absorbed in the IGM

Blazar TeV e-e* pairs  multi-GeV
AN t AN
<I>* 1 R > R

~100 Mpc ~ ~100 kpc

TeV photons from blazars pair-produce in the IGM by interacting with ~ eV EBL photons.
* mean free path is ~100 Mpc

YTev + Yev — €' + €

The beam of electron-positron pairs has:
Lorentz factor y=10°-107 and density ratio aa=10-1>-10-18 (wrt the IGM plasma)

These pairs should IC scatter off the CMB, producing ~ GeV photons.
 mean free path is ~ 100 kpc (IC cooling length)



No excess GeV emission from blazars

Every TeV blazar should have a GeV halo of reprocessed light. However, not seen!
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IGM fields or plasma instabilities

Every TeV blazar should have a GeV halo of reprocessed light. However, not seen!
Two possibilities:

1) IGM magnetic fields deflect the streaming pairs (Neronov
Vovk 10, Tavecchio+ 11, Finke+15)
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2) The pair energy is deposited into the IGM as heat, via collective plasma instabilities
(Broderick, Chang & Pfrommer 12, 13, 14)



Plasma instabilities in the IGM

Interpenetrating beams of charged particles are unstable (beam-plasma instabilities)

et e microscopic scales!
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Two-stream (bump on tail) instability Oblique instability

energy from particles to waves:
SRS | instability
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Beam-plasma linear evolution

Linear analysis: If all the beam energy is deposited into the
the oblique instability grows 10-100 times IGM via plasma instabilities:

faster than the IC cooling losses.  No reprocessed blazar GeV emission

excluded for collective * |GM field estimates are invalid
plasma phenomena * |IGM heating from blazars will have

important cosmological implications

HI,Hel-/Hell-reionization
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The non-linear evolution of the beam-plasma system requires PIC simulations.




10% in heat, 90% in GeV emission

Blazar-induced beams: Lorentz factor y=109-107 and density ratio a.=10-1>-10-18

Numerically tractable: Lorentz factor y=101-103 and density ratio a=10-1-10-3
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COLD (i.e., monoenergetic) beams:

» Regardless of the beam 7y or @, the beam longitudinal momentum dispersion at the end

of the evolution reaches ~ 0.2 ¥, and the IGM heating fraction reaches ~10%.

— 90% is still available to power the reprocessed GeV emission.



Blazars beams are not cold

Blazar beams are born WARM:

* the pair production cross section
peaks at ~ few meC2.

* the TeV blazar spectrum and the
EBL spectrum are broad.

The heating fraction will be «10%:

e if the initial longitudinal beam dispersion
Is already > 0.2 v, as expected for blazar
beams.

So, nearly all of the energy stays in the beam!

IGM heating fraction
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Summary

High-energy emission from blazars:

0~90°

NS

* The (unlikely) dawn: internal shocks, if significantly magnetized

(0>10-3) and quasi-perpendicular, are poor particle accelerators.

 The (likely) dawn: magnetic reconnection in magnetically-dominated
flows (o>1) is fast and efficient, can produce non-thermal populations
with a power-law slope p~1+2, and results in rough energy

equipartition between particles and fields.

* The sunset: TeV photons will pair-produce in the IGM. The resulting
beam will deposit «10% of the its energy into the IGM. Most of the

beam energy will result in multi-GeV emission by IC scattering off the
CMB.



