Shutting down the central engine in photospheric models of gamma-ray bursts

Robert Mochkovitch (IAP)

The prompt emission

- duration : $10^{-3} 10^3$ s
- diversity

• spectrum: broken power-law with $E_{\rm p} \sim 0.1 - 1 \ {\rm MeV}$

The prompt emission results from dissipation in a relativistic jet with $\Gamma > 100$

Three possible sites

Pros and Cons for each site...

Pros and Cons for each site...

• internal shocks

Pros: Many aspects of GRB phenomenology recovered; OK with efficiency issue (Beniamini's talk)

Cons: Spectral shape; synchrotron spectra too broad (talks by van Eerten, Yu, poster by Axelsson) and too soft $N(E) \propto E^{-3/2}$ in fast cooling regime (improved by IC; Bosnjak & Daigne, 2014) Shocks suppressed if ejecta is strongly magnetized

magnetic reconnection

Pros: Natural in a magnetized ejecta

Cons: Phenomenology less explored (but see Benjamini & Granot, 2015 and next talk by O. Bromberg) Spectral shape (synchrotron + many emitters); continuous acceleration ?

dissipative photosphere

Looking for tests to discriminate among models

The dissipation radius: R_{diss}

- internal shocks: $R_{IS} \approx 2\Gamma^{2}ct_{var} \rightarrow 2\Gamma^{2}ct_{w} \approx 610^{15}\Gamma_{2.5}^{2}t_{w} \text{ cm}$ • reconnection: $R_{rec} \leq R_{IS} \quad \text{(large range of } R \text{ possible})$ • dissipative photosphere: $R_{photo} \approx \frac{\kappa_{T} \dot{E}_{K}}{4\pi c^{3}\Gamma^{3}} f_{\pm} \approx 410^{12} \frac{\dot{E}_{53}}{\Gamma_{2.5}^{3}} f_{\pm} \text{ cm} \ll R_{IS}$
- \rightarrow Observational constraints on $R_{\rm diss}$

A simple geometrical interpretation for the early steep decay

"high latitude emission" of the last flashing shell (Kumar & Panaitescu, 2000)

The early steep decay: an effective behavior of the central engine ?

Is it possible ? What does it tell us about the source extinction ?

- Observed behavior: $L \propto \left(\frac{t}{t_0}\right)^{-3}$, $E_p \propto L^{\alpha}$ with $\alpha \sim 1/3$ • Define $\mathcal{E}_{rad} = \left(\frac{L}{E}\right)$ radiative efficiency of subphotospheric heating $\stackrel{\bullet}{(E \text{ injected power in jet})}$
- Compute the evolution of Γ and $R_{\rm ph}$ that reproduce the observed behavior

$$R_{ph} \approx 510^{13} \varepsilon_{rad}^{-2/5} L_{52}^{1/10} \text{ cm}$$

 $\Gamma \approx 65 \varepsilon_{rad}^{-1/5} L_{52}^{3/10}$

Reasonable evolution: as *L* decreases by a factor 1000 $R_{\rm ph}$ decreases by 2 and Γ by 10

Some questions and one interesting feature

<u>Questions</u>

- (i) which sub-photospheric dissipation process ? ($\mathcal{E}_{rad} \sim 0.1 1$) (should operate over a large range of luminosity)
- (ii) why is the ESD more regular than the prompt phase ?(why such a diversity of prompt light curves and a generic behavior for the ESD ?)

• Photospheric models easily produce "Internal Plateaus"

Summary

- in photospheric models the simple geometric interpretation for the ESD does not work (if you like the geometric interpretation → (probably) forget about photospheric emission)
- the ESD must correspond to an effective behavior of the central engine possible → provides information on how the source shuts down but some difficult questions: dissipation process, variability
- search for tests of models is important and can provide guidelines to build new scenarios