Shocks and Relativistic Particle Acceleration in Novae

Brian Metzger (Columbia University)

Primary Collaborators

Andrei Beloborodov, Jeno Sokoloski, Jennifer Weston, **Andrey Vlasov**, Indrek Vurm (Columbia) Laura Chomiuk, Tom Finzell (Michigan State), Damiano Caprioli (Princeton)

6th International Fermi Symposium – Arlington, VA - Tuesday, November 10, 2015

Evidence for Shocks in Novae: 1. early non-thermal radio flares

Evidence for Shocks in Novae: 1. early non-thermal radio flares

Evidence for Shocks in Novae: 2. Hard (> keV) Thermal X-rays

LAT Detects Symbiotic Nova V407 Cyg

Interpretation: Shocks between ejecta and dense red giant wind (e.g. Orlando & Drake 12, Martin & Dubus 13)

"...these sources can have dramatic influence on the local interstellar medium and Galactic cosmic rays, but few binary systems with a WD are known to have a similar environment; **hence, we expect gamma-ray novae to be rare.**"

LAT detects classical novae!

Geometry of Classical Nova Shocks

Geometry of Classical Nova Shocks

LAT Spectrum: Hadronic or Leptonic?

Ackermann et al. 2014

Nova shocks are dense

$$n \sim \frac{M_{ej}}{4\pi m_p (Vt)^3} \sim 10^{10} \left(\frac{M_{ej}}{10^{-4} M_{\odot}}\right) \left(\frac{t}{3 \text{ week}}\right)^{-3} \left(\frac{V}{10^3 \text{ km s}^{-1}}\right)^{-3} \text{ cm}^{-3}$$
Implications:

thermal electrons and ions are Coulomb coupled
 shocks are radiative

$$\frac{t_{\text{cool}}}{t} \approx \begin{cases} 2.7 \times 10^{-3} \eta v_8^4 M_{-4}^{-1} t_{\text{wk}}^2 & \text{FS} \\ 0.13 v_8^4 \dot{M}_{-5}^{-1} t_{\text{wk}} & \text{RS} \end{cases} <<1$$

most kinetic power dissipated by shock emerges as radiation
 3. opaque to soft X-rays (bound-free) & radio (free-free)
 upstream gas is neutral well ahead of shock

Anatomy of a Nova Shock

Anatomy of a Nova Shock

Anatomy of a Nova Shock

Interaction Powered Type IIn Supernovae

As Probes of Particle Acceleration

Measured gamma-ray luminosity: $L_{\gamma} = \epsilon_{\rm nth} \epsilon_{\gamma} L_{\rm sh}$

Leptons & hadrons are fast cooling

fraction of non-thermal particle energy radiated in LAT bandpass:

 $\epsilon_{\gamma} < 0.1-0.3$

$$L_{\rm sh} < L_{\rm opt} \implies \epsilon_{\rm nth} > \epsilon_{\rm nth,min} =$$

Non-Thermal Acceleration Efficiency

Hadronic Scenario:

ε_{nth} up to 0.1, depending on B field geometry (Caprioli & Spitkovsky 14) Leptonic Scenario:

 $\epsilon_{nth} < 10^{-3}$ from observations & PIC simulations (e.g. Kato 14, Park+14)

Non-Thermal Radio Emission

BDM et al. 2015b

Summary

- LAT discovery of novae as luminous GeV γ-ray sources establishes that shocks & relativistic particle acceleration are key features of these events. Leptonic/hadronic scenarios not distinguished by LAT spectrum alone.
- High densities of classical nova ejecta are novel and imply: (1) shocks are radiative; (2) gas well ahead of shock is neutral; (3) relativistic leptons/ hadrons are fast cooling [calorimeter].
- Thermal X-rays from γ-ray shocks not observed at early times (absorption by neutral gas) => shock power emerges at optical/UV, as in Type IIn SNe.
- Measured ratio of γ -ray to optical luminosities places lower limit on acceleration efficiency of non-thermal particles, ϵ_{nth} . High measured values $\epsilon_{nth} > 10^{-2}$ - 10^{-3} may favor hadronic scenarios.
- Non-thermal radio synchrotron emission, delayed by free-free absorption, provides a complimentary probe of electron acceleration efficiency (Linford talk).
- Nova shocks can (theoretically) accelerate particles up to TeV energies, producing emission accessible to Cherenkov telescopes and IceCube.