

Blazar variability in gamma-ray and optical polarization with fermi and Kanata telescope

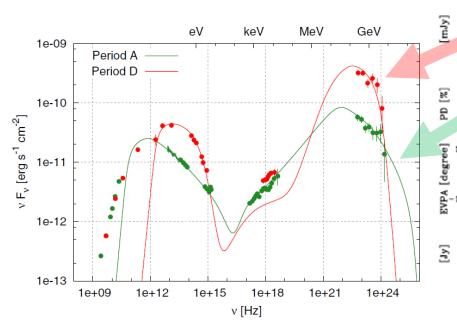
Ryosuke Itoh,

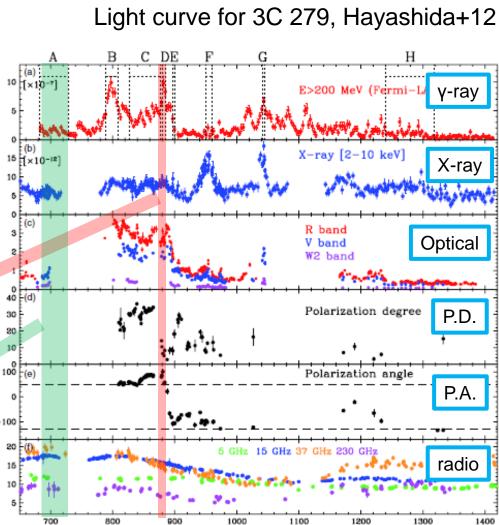
Yasushi Fukazawa, Y. T. Tanaka,

M. Uemura (Hiroshima University)

for the Fermi-LAT collaboration, Kanata team 2015-11-09 6th Fermi Symposium

MW-Obs. of blazar in Fermi era

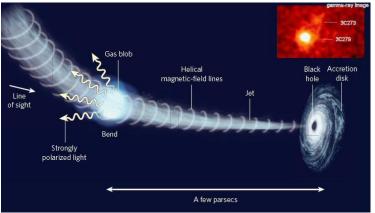

[erg cm⁻² s⁻¹] [ph cm⁻² s



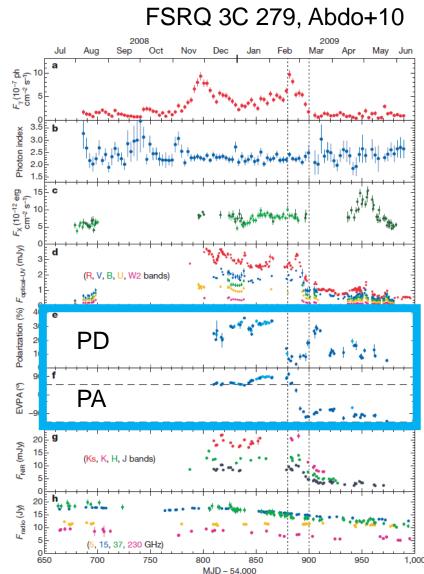
Owing to improvement of instruments, we now can observe the daily change of SED.

Space Telescope

It provides us with a lot of information about the jets


[MJD - 54000]

Polarization in blazar


 Polarization information plays an important role in studying the environment in the jet

Gamma-ray Space Telescope

 Many MW-polarimetric observations were performed, but "common" properties in the jets are still unclear

Our team performed a number of monitoring observations with optical polarization with Fermi

Kanata Telescope

Kanata Telescope

1.5m diameter telescope designed for optical and near infrared band located at Higashi-Hiroshima Observatory in Japan.

Target object; Any type of transients (AGN, GRB, etc...)

Performed a lot of **campaign/ ToO/follow-up** observations with Fermi/LAT and other telescopes

TRISPEC (Cassegrain)

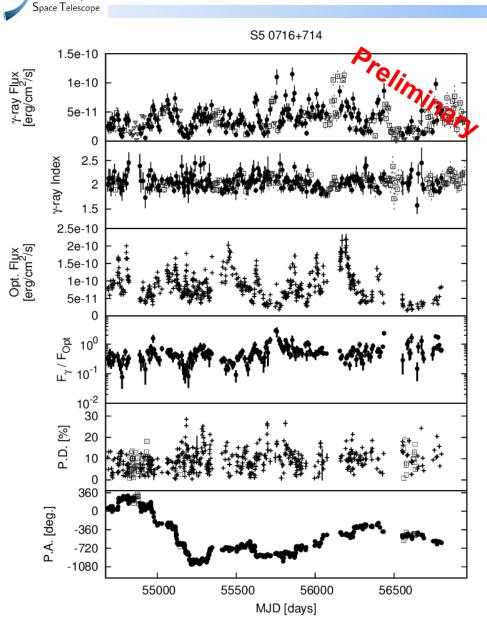
Optical and NIR polarimeter. Have a capability of **simultaneous** polarimetry in **optical & NIR** band

HOWPol (1st Nasmyth)

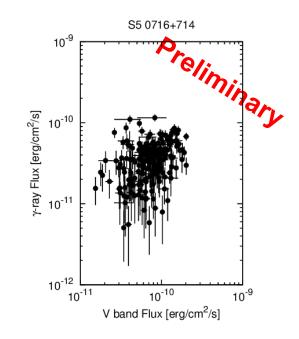
Optical polarimeter

Have a capability of one-shot polarimetry It enable us to get polarization with time scale of < 1 minute for R=15 mag object.

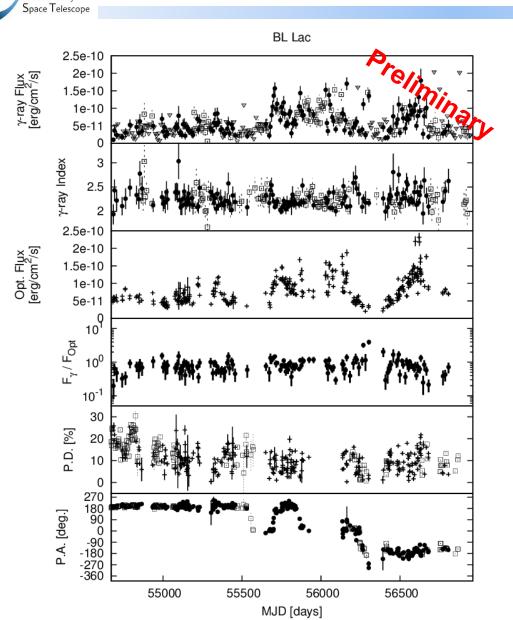
Target List



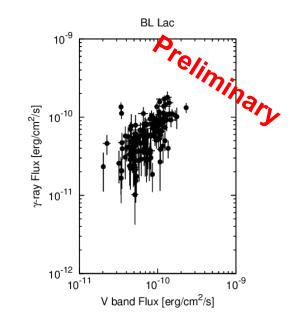
Red; GeV bright source

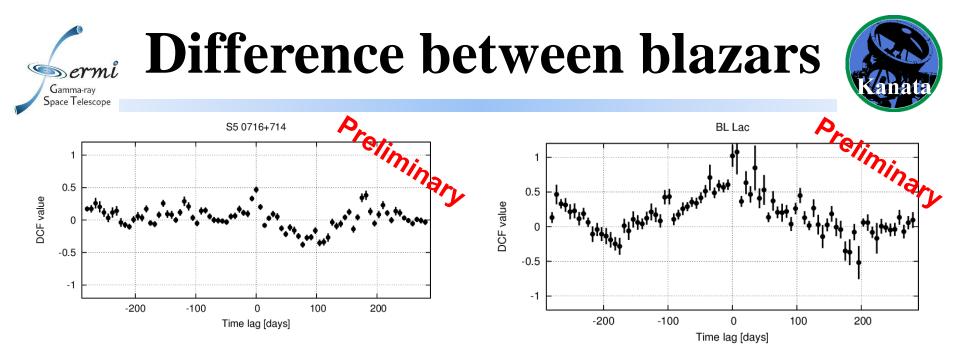

FSRQ	LSP	ISP	HSP	RL-NLSy1
3C 454.3 (498)	BL Lac (539)	S5 0716+714 (628)	Mrk 501 (244)	1H 0323+342
3C 273 (332)	OJ 287 (413)	3C 66A (487)	PG 1553+113 (225)	PMN J0948+0022
3C 279 (177)	AO 0235+164 (93)	1ES 1959+650 (202)	PKS 2155-304 (161)	
PKS 1749+096 (163)	OJ 49 (70)	S2 0109+22 (102)	Mrk 421 (74)	
3C 371 (124)	S4 0954+658 (5)	PKS 0048-097 (63)	ON 325 (56)	
RX J1542.8+612 (113)	1ES 1218+304 (3)	ON 231 (48)	1ES 0806+524 (54)	
PKS 1510-089 (110)		OQ 530 (19)	H 1722+119 (66)	
Mis V1436 (106)			PKS 0422+004 (42)	
CTA 102 (92)	 Bright GeV & Opt. source Shows large flare 		1ES 2344+514 (33)	
PKS 1502+106 (76)			1ES 0647+250 (24)	
QSO 0454-234 (28)	Aug. 2008 – N	lov. 2014	1ES 0323+022 (21)	
S5 1803+784 (35)	(6.5 years data)			
PKS 0754+100 (28)				7
PKS 0215+015 (5)	Pass 8 Fermi/ (100MeV to 30			
GB6 J1239+0443 (5)		,	<i>,</i>	

Ind. Object; S5 0716+714



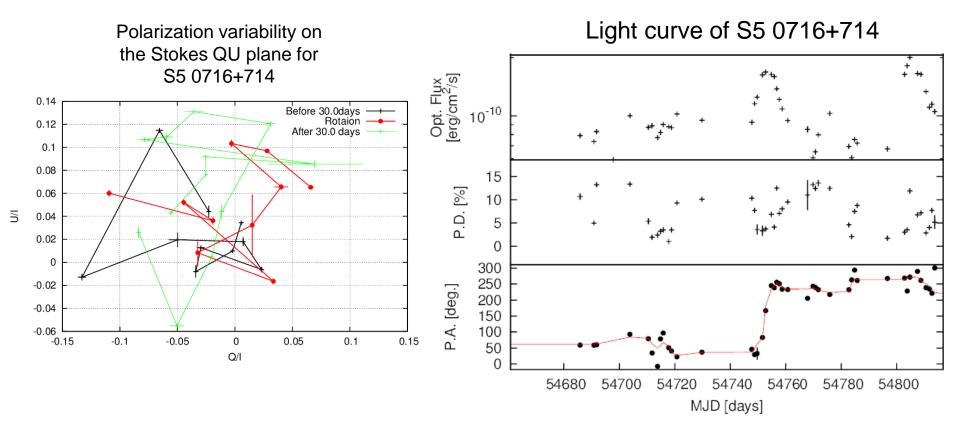
- Average cadence ~ 3 days
- Showed large variability of gamma-ray flux, optical flux, PD and PA
- Sometime, PA shows large variation


Individual Object; BL Lac Sermi



Gamma-ray

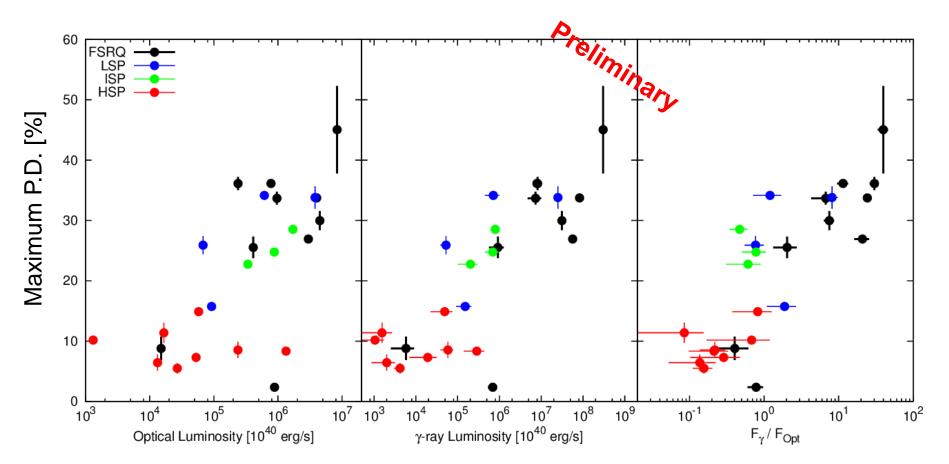
- BL Lac also shows large variability in GeV, Optical flux and PD
- But variability in PA is smaller than that in S5 0715+714


	S5 0716+714	BL Lac
Synchrotron peak [Hz]	10 ^{14.6}	10 ^{13.6}
Red shift	0.3	0.068
Corr. betw. gamma-ray & opt. flux	~0.5	~1.0
Variability of P.A.	Large	Small

Similar blazar shows different properties

 What is the major parameter for blazar? Synchrotron peak? Redshift? BH mass? Luminosity? etc...

PA Rotation/Swing

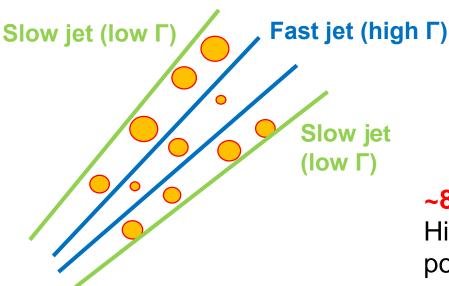

We found 33 PA rotation events from 15 objects, But there are no clear relation between PA rotation and GeV/Optical flare

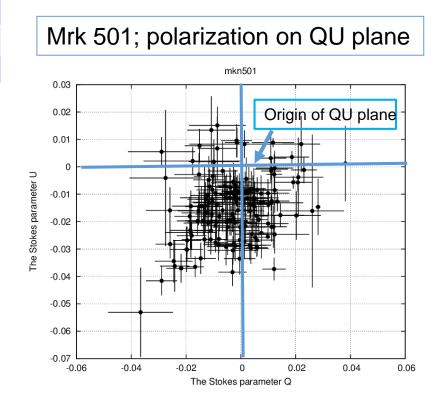
Correlation between Lum. & Dermi Variability of optical flux Gamma-ray Space Telescope eliminary 1.4 HSP 1.2 Variability of optical flux [norm. RMS] 0.8 0.6 0.4 0.2 0 10³ 10⁷ 10^{4} 10^{5} 10^{6} 10^{3} 10⁴ 10⁵ 10^{6} 10^{8} 10⁹ 10^{-1} 10^{0} 10^{7} 10^{1} 10^{2} Optical Luminosity [10⁴⁰ erg/s] γ-ray Luminosity [10⁴⁰ era/s] F_v / F_{Opt}

Gamma-ray luminous (Not optical) blazars show large variability in the optical band

Correlation between Lum. & Maximum PD

Maximum PD shows good correlation with gamma-ray Luminosity or ratio of gamma-ray flux and optical flux (not optical luminosity)





	High PD	Low PD
Bulk Lorentz factor	High	Low
Number of emission region	Few	Many
Compton dominance	High	Low

Gamma-ray

Superposition of several emission regions with various magnetic field directions will result in low degree of total polarization.

~80% of Low-PD objects and ~30 of High-PD objects show such systematic polarization on the Stokes QU plane.

- We performed long-term optical polarimetric observation of 39 blazars with Kanata and *Fermi/LAT*. And we found
 - 1. 33 "PA rotation" events but there is no clear relation between it and GeV/Optical flare
 - 2. Variability in the optical might be related with γ -ray luminosity
 - 3. Maximum PD related with γ -ray luminosity or ratio of γ -ray flux and optical flux (~ Compton dominance).
- These results indicated that low γ -ray luminous blazars possess "multi-emission region".
- A measurement of "Flare cadence" will be helpful to test the assumption of "multi-emission region" model.

Study for extracting method of flare and relation between GeV/optical flare and polarization angle is presented in poster session (M. Uemura, Y. kanda)

We are planning to open all the polarization data as database in a few month

Kanata team welcomes collaborative observations of any transient objects (Blazar, AGN, SN, X-ray binary, and any transients). Please contact us if you are interested in working with our team.