Gas, dust, & cosmic rays in nearby clouds (Cham, Tau, Cal, Per, Cet)

Isabelle Grenier, Quentin Remy, on behalf of the Fermi LAT Collaboration AIM, Université Paris Diderot & CEA Saclay

γ rays & dust tracing of the total gas

⁼ermi 6 years > 1 GeV

Fermi-LAT > 1 GeV

diffuse intensity \propto $\int n_{gas} n_{CRs} dI$

thermal intensity \propto $\int (M_D/M_{gas}) \kappa_D n_{gas} B(T_D) dI$

local gas emissivities (0.4-10 GeV)

- 30% variations locally
 - consistent with uncertainties in the derivation of HI column densities
- no trend with radial distance in the Galaxy (too short a span)
- ono trend with altitude above/below the Galactic plane

 \bigcirc no spectral deviations across the HI, DNM, and H₂ gas phases, down to pc scale \bigcirc ≈ uniform CR penetration at the current precision

○ no spectral deviations across the HI, DNM, and H₂ gas phases, down to pc scale
○ \approx uniform CR penetration at the current precision

gas phases in the Chameleon

- DNM traced by CR & dust correlation
 DNM mass if same CR flux in the HI & DNM phases
- ONM spatial extent between the diffuse HI and compact CO

gas phases in the Chameleon

- DNM traced by CR & dust correlation
 DNM mass if same CR flux in the HI & DNM phases
- ONM spatial extent between the diffuse HI and compact CO

gas phases in Taurus-Perseus-California

 \bigcirc M_{DNM} only assumption: $q_{HI} = q_{DNM}$

ONM spatial extent between the diffuse HI and compact CO

gas phases in Taurus-Perseus-California

 \bigcirc M_{DNM} only assumption: $q_{HI} = q_{DNM}$

ONM spatial extent between the diffuse HI and compact CO

gas phases in Taurus-Perseus-California

 \bigcirc M_{DNM} only assumption: $q_{HI} = q_{DNM}$

ONM spatial extent between the diffuse HI and compact CO

in-depth study of other clouds underway

the Chameleon complex

γ-ray and dust modelling

γ-ray and dust modelling

 $NH_{m\lambda} = N_{HI} + 2*X_{coy} * W_{CO} + NH_{DNMy}$

- P average τ_{353} /N_H ≈ (2-3) times the all-sky average, twice the HI cirrus value
- \bigcirc 2 to 4.6-fold rise in au_{353}/N_{H} and 1.5 to 2.9-fold rise in A_{VQ}/N_{H} over a single decade in N_{H}
 - ✦ albeit 2-fold decline in radiated power
 - \blacklozenge opacity rise related to increase in density and H₂ fraction
 - + peaks in CO because of opt. thick ^{12}CO

 $NH_{m\lambda} = N_{HI} + 2*X_{coy} * W_{CO} + NH_{DNMy}$

- average $\tau_{353}/N_H \approx$ (2-3) times the all-sky average, twice the HI cirrus value
- \bigcirc 2 to 4.6-fold rise in au_{353}/N_{H} and 1.5 to 2.9-fold rise in A_{VQ}/N_{H} over a single decade in N_{H}
 - ✦ albeit 2-fold decline in radiated power
 - \blacklozenge opacity rise related to increase in density and H_2 fraction
 - \bullet peaks in CO because of opt. thick ¹²CO

DNM-to-CO transition

4

 \bigcirc DNM dominates H₂ densities

DNM mass fractions:

0.25

0.2

0.15

0.1

0.3

 $M_{\rm DNM}/M_{\rm tot}$

- ♦ wide range in local clouds
- ♦ often exceeds the 30% theoretical expectation
- \bullet unexplained rise with $\langle A_{VCO} \rangle$

DNM-to-CO transition

4

DNM dominates H₂ densities 0

DNM mass fractions:

0.25

0.2

0.15

0.1

 $M_{\rm DNM}/M_{\rm tot}$

- ♦ wide range in local clouds
- ♦ often exceeds the 30% theoretical expectation
- \bullet unexplained rise with $\langle A_{VCO} \rangle$

X_{co} = CO-to-H₂ conversion ratio

 $X_{CO}(kpc) \approx 1.9 \ 10^{20} \ cm^{-2} \ (K \ km/s)^{-1}$

phase confusions ? pile-up along sightline?

X_{12CO-13CO} increase due to assumed [Z]/[Z⊙] gradient !

- \bigcirc X_{COY}(kpc-scale) \approx 2 X_{COY}(pc-scale) value
 - ◆ $X_{CO}(pc) \approx 0.9 \ 10^{20} \ cm^{-2} \ (K \ km/s)^{-1}$
 - ✦ possible causes:
 - $\star X_{CO\gamma}$ increase with radius: TBC !
- \bigcirc often $X_{COdust} >> X_{CO\gamma}$
 - due to dust evolution rather than cosmic-ray exclusion

- A_V/N_H ratios in the DNM
 - γ-ray estimates
 consistent with
 Bohlin+ 1978

