Evidence for Unresolved Gamma-Ray Point Sources in the Inner Galaxy

Ben Safdi

Massachusetts Institute of Technology

2015
B.S., S. Lee, M. Lisanti, and B.S., S. Lee, M. Lisanti, T. Slatyer, W. Xue [1412.6099 and 1506.05124]

Thank you Fermi !

- Pass 7 data: Ultraclean front-converting events (a few plots)
- Pass 8 data:

Ultracleanveto class, top quartile by PSF (through June 3, 2015) (most plots)

- Energy range: ~2-12 GeV

The GeV excess in the Inner Galaxy

Import to understand contributions from unresolved PSs to gamma-ray background to constrain contributions from dark matter (DM)

Photon Statistics: DM vs. Point Sources

Dark Matter

Point Sources

Photon Statistics: DM vs. Point Sources

Point Sources

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p
- Smooth emission: Poissonian counting statistics:

$$
p_{k}^{(p)}=\lambda^{k} e^{-\lambda} / k!
$$

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p
- Smooth emission: Poissonian counting statistics:

$$
p_{k}^{(p)}=\lambda^{k} e^{-\lambda} / k!
$$

- Point-source emission: Non-Poissonian counting statistics

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p
- Smooth emission: Poissonian counting statistics: $p_{k}^{(p)}=\lambda^{k} e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
- (1) What is probability to find a PS in a given pixel?

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p
- Smooth emission: Poissonian counting statistics: $p_{k}^{(p)}=\lambda^{k} e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
- (1) What is probability to find a PS in a given pixel?
- (2) Given a PS, what is the probability it produces k photons?

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p
- Smooth emission: Poissonian counting statistics: $p_{k}^{(p)}=\lambda^{k} e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
- (1) What is probability to find a PS in a given pixel?
- (2) Given a PS, what is the probability it produces k photons?
- Source-count: $\frac{d N^{(p)}}{d F}=A^{p} \begin{cases}\left(\frac{F}{F_{b}}\right)^{-n_{1}}, & F \geq F_{b} \\ \left(\frac{F}{F_{b}}\right)^{-n_{2}}, & F<F_{b}\end{cases}$
- F is average flux (photons $/ \mathrm{cm}^{2} / \mathrm{s}$)

Photon Statistics: Point Sources

- $p_{k}^{(p)}=$ probability of finding k photons in pixel p
- Smooth emission: Poissonian counting statistics:
$p_{k}^{(p)}=\lambda^{k} e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
- (1) What is probability to find a PS in a given pixel?
- (2) Given a PS, what is the probability it produces k photons?
- Source-count: $\frac{d N^{(p)}}{d F}=A^{p} \begin{cases}\left(\frac{F}{F_{b}}\right)^{-n_{1}}, & F \geq F_{b} \\ \left(\frac{F}{F_{b}}\right)^{-n_{2}}, & F<F_{b}\end{cases}$
- F is average flux (photons $/ \mathrm{cm}^{2} / \mathrm{s}$)
- A^{p} follow a spatial template

Non-Poissonian template fit (NPTF)

- data set d (counts in each pixel $\left\{n_{p}\right\}$)

Non-Poissonian template fit (NPTF)

- data set d (counts in each pixel $\left\{n_{p}\right\}$)
- model \mathcal{M} with parameters θ

Non-Poissonian template fit (NPTF)

- data set d (counts in each pixel $\left\{n_{p}\right\}$)
- model \mathcal{M} with parameters θ
- The likelihood function:

$$
p(d \mid \theta, \mathcal{M})=\prod_{\text {pixels } p} p_{n_{p}}^{(p)}(\theta)
$$

The models: Poissonian templates

Fermi p6v11 diffuse (1)

Isotropic (1)

Fermi bubbles (1)

The models: Non-Poissonian templates

- Disk: $n \propto \exp (-R / 5 \mathrm{kpc}) \exp (-|z| / 0.3 \mathrm{kpc})$

Check 1: the $\ell=30^{\circ}$ excess

Mask 4° around plane, out to 30° around $\ell=30^{\circ}$

Mask 4° around plane, out to 30° around $\ell=30^{\circ}$

- Plots normalized for region within 10° of ROI center $\left(b \geq 4^{\circ}\right)$.

The $\ell=30^{\circ}$ excess: no evidence for spherical PSs

- NFW DM, NFW PS templates centered around $\ell=30^{\circ}$
- Disk template centered around $\ell=0^{\circ}$

The $\ell=30^{\circ}$ excess: no evidence for spherical PSs

- NFW DM, NFW PS templates centered around $\ell=30^{\circ}$
- Disk template centered around $\ell=0^{\circ}$

- Bayes factor ~ 0.1

ROI: the $\ell=0^{\circ}$ excess

The $\ell=0^{\circ}$ excess: evidence for spherical PSs

- NFW DM, NFW PS templates centered around $\ell=0^{\circ}$
- Disk template centered around $\ell=0^{\circ}$

The $\ell=0^{\circ}$ excess: evidence for spherical PSs

- NFW DM, NFW PS templates centered around $\ell=0^{\circ}$
- Disk template centered around $\ell=0^{\circ}$

- Bayes factor $\sim 10^{9}$ (3FGL unmasked), 10^{4} (3FGL masked)

The $\ell=0^{\circ}$ excess: source-count function
3FGL unmasked

The $\ell=0^{\circ}$ excess: ~ 400 PSs total $\left(|b| \geq 2^{\circ}, \psi \leq 10^{\circ}\right)$
3FGL unmasked

Check 2: Monte Carlo

The $\ell=0^{\circ}$ excess: Monte Carlo

The $\ell=0^{\circ}$ excess: Monte Carlo

Simulated data

The $\ell=0^{\circ}$ excess: energy spectrum

- Work in progress with L. Necib (see poster in DM section)

- Work in progress at high-latitudes for IGRB (M. Lisanti, L. Necib, B. S., S. Sharma)

The NPTF Code Package

- Will be released late this year / early next year
- Fast and semi-analytic evaluation of $p_{n_{p}}^{(p)}(\theta)$ and $p(d \mid \theta, \mathcal{M})$
- any PSF, variety of $d N / d S$ characterizations, arbitrary number of PS templates.
- Python interface
- Bayesian (Multinest, Polychord) and Frequentist (Minuit) options
- Applications beyond Fermi
- L. Necib (MIT), N. Rodd (MIT), B.S., Siddharth Sharma (Princeton)

The $\ell=0^{\circ}$ excess: finding the PSs

- Work in progress (T. Linden, N. Rodd, B.S., T. Slatyer, J. Thaler)

The $\ell=0^{\circ}$ excess: finding the PSs

- Work in progress (T. Linden, N. Rodd, B.S., T. Slatyer, J. Thaler)
- Take multi-wavelength approach (gamma \rightarrow radio)

The $\ell=0^{\circ}$ excess: finding the PSs

- Work in progress (T. Linden, N. Rodd, B.S., T. Slatyer, J. Thaler)
- Take multi-wavelength approach (gamma \rightarrow radio)
- - $\log [1$ - CDF(data; DM model)]

Tentative conclusion: GeV excess better fit by point-source emission than smooth (DM) emission

NPTF Systematics and Summary

- Spatially mis-modeled background: real concern, can affect source-count function, but pref. for PSs seems robust
- Mis-modeling signal (NFW profile): appears to have minimal effect
- Mis-modeling angular resolution: predictable but minimal effect.
- Over-constrained source-count function: added more degrees of freedom, results consistent within uncertainties
- Side-band study: study of bright excess 30° from GC (no pref for PSs)
- Increased dataset: (~ 5.5 years Pass 7 to 7 years Pass 7 to 7 years Pass 8), significance increases within prediction from Monte Carlo
- Validation with Monte-Carlo-generated "fake" data

The $\ell=0^{\circ}$ excess: 3FGL masked ROI

The $\ell=0^{\circ}$ excess: source-count function
3FGL masked

Check 3: Isotropic PSs at high Latitudes

Isotropic point sources

- Region: mask 30° around plane

- include diffuse, bubbles, isotropic, and isotropic PS

Isotropic point sources: source-count function

