Efficient Nonthermal Particle Acceleration during Magnetic Reconnection in Magnetically-dominated Flows

Fan Guo Theoretical Division Los Alamos National Laboratory

Collaborators: Hui Li, Bill Daughton, Nicole Lloyd-ronning (LANL) Xiaocan Li (UAH), Wei Deng, Bing Zhang (UNLV) Haocheng Zhang (Ohio U),Yi-Hsin Liu (NASA Goddard)

Magnetic Reconnection & Associated Particle Acceleration

Where does reconnection occur?

- Planetary magnetosphere, solar flares
- Active galactic nuclei (AGN), Gamma-ray bursts (GRBs), Pulsar wind nebulae (PWNs)

Particle Acceleration: Hints from solar flares

- Power-law distribution
- A large fraction of electrons are accelerated $N_{nonthermal} > N_{thermal}$ (e.g., Krucker et al. 2010) This is not well understood.

Extreme Acceleration/Radiation in AGNs, GRBs, and PWNe

Focusing on a local reconnection site with $\sigma >> I$

GF et al. 2014 PRL, 2015a ApJ (pair, particle acc.) 2015b arxiv 1511.01434 (ion-electron, particle acc.) Liu, GF, Daughton, Li, Hesse 2015 PRL (fast outflow/dissipation) Li, GF, Li et al. 2015 ApJL - nonrelativistic reconnection

Focusing on a local reconnection site with $\sigma >> I$ Key results:

- Efficient particle acceleration and formation of power laws $dN/d\gamma = \gamma^{-p}$, and extending to $\gamma_i = \sigma, \ \gamma_e = (m_i/m_e)\sigma$
- Main Acceleration mechanism: first-order relativistic Fermi process
- Power-law model and formation condition ($\tau_{acc} < \tau_{inj}$).
- Properties of relativistic magnetic reconnection: Relativistic inflow and outflow
 Reconnection rate is enhanced because of relativistic effect
 2D & 3D rates are similar

GF et al. 2014 PRL, 2015a ApJ (pair, particle acc.) 2015b arxiv 1511.01434 (ion-electron, particle acc.) Liu, GF, Daughton, Li, Hesse 2015 PRL (fast outflow/dissipation) Li, GF, Li et al. 2015 ApJL - nonrelativistic reconnection

Initial Setup & Parameters

 $2D: \sigma = 1-1600$

Boundary conditions: mainly periodic currently exploring open boundary cases

3D: σ up to 100

 $L_x \times L_z \times L_y = 300d_i \times 194d_i \times 300d_i$

~1.4 trillion particles and 2048³ grids, using 10⁵ CPU-cores on Blue Waters

Plasma flows associated with reconnection

Energy spectra from 2D and 3D PIC simulations

A relativistic run with $\sigma = 100$, mi/me=100

Spectral index s ~ I

Fast variability ~ Lx/c

$$\gamma_i = \sigma, \ \gamma_e = (m_i/m_e)\sigma$$

$$\varepsilon_{max} = \int |qE_{rec}| cdt$$

slopes are identical in momentum space

Fermi Acceleration Pattern

Ist order Fermi mechanism

 Acceleration by "collision" in between moving magnetic clouds (Fermi 1949)

$$\Delta \gamma = \left(\Gamma^2 \left(1 + \frac{2Vv_x}{c^2} + \frac{V^2}{c^2} \right) - 1 \right) \gamma$$
$$\Delta t = L_{is} / v_x$$
$$\alpha = \frac{\Delta \gamma}{\gamma} (\gamma \Delta t)$$

• In large-scale simulations, the dominant electric field for energy release

 $E = -V \times B/c$

• In reconnection region, the Fermi process is accomplished by curvature drift motion in plasmoids along the motional electric field.

The acceleration is dominated by energy gain through curvature drift motion

Fermi acceleration formula agrees with the acceleration by curvature drift motion.

$$\Delta \gamma = \left(\Gamma^2 \left(1 + \frac{2Vv_x}{c^2} + \frac{V^2}{c^2} \right) - 1 \right) \gamma$$
$$\Delta t = L_x / v_x$$
$$\alpha = \frac{\Delta \gamma}{\gamma} \left(\frac{\gamma \Delta t}{\gamma} \right)$$

Power-law formation

Two parts in the final solution:

Particles initially in the current layer: heated thermal distribution
Particles injected from upstream: power-law distribution
This explains a number of previous simulation results.

Both periodic (closed) and open boundary systems give spectral index $p \sim I$ for high- σ case.

Open boundary simulations with sigma=0.25

The property of relativistic reconnection ($\sigma >> 1$)

- Efficient nonthermal particle acceleration and formation of hard power laws.
- Selativistic inflow and outflow Γ up to 10.
- Seconnection rate is enhanced (locally $R \sim I$).
- 2D & 3D are similar. Why?
- Effect of boundary conditions: Periodic, Open, Line-tied...
- What's the implication to large-scale system (AGN, GRB, PWN, etc.)