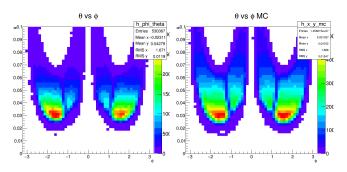
FEE Rate Analysis

Matt Solt

SLAC National Accelerator Laboratory mrsolt@slac.stanford.edu

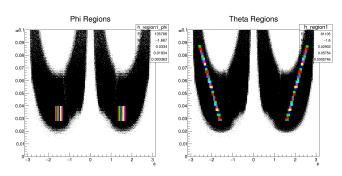
09/01/15

Introduction

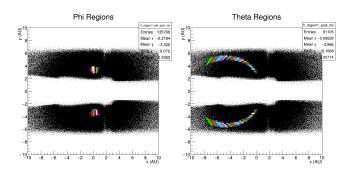

- ▶ Pass1, V1 Detector, Singles1 Trigger
- ► FEE cuts 10 ns timing window, 0.6-1.2 GeV energy cut, greater than 2 cluster size cut. Everything is matched
- ▶ Narrower ϕ ranges for θ regions
- ▶ FEE rates in different spherical (ϕ and θ) regions of detector. Comparison of data and MC.
- Data 5772; MC 3.4.0

◆ロ → ◆御 → ◆ き → ◆き → ・ き ・ 夕 へ ○

Stanford


Parameter Space

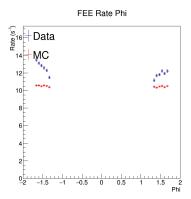
- ightharpoonup heta vs ϕ for Data (left) and MC (right) for FEE matched tracks. Positive ϕ is top and negative ϕ is bottom
- ► There are differences between Data and MC that will be more quantitative on the following plots


Region Definitions

- Definition of regions shown in the different colors. Black is not a part of any region
- ϕ regions (left): $\Delta \phi = 0.0666$, $0.028 < \theta < 0.040$
- θ regions (right): $\Delta \phi = 0.2$, $\Delta \theta = 0.02$

Region Definitions (Cont.)

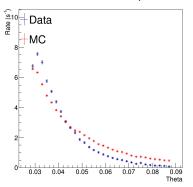
- Definition of regions shown from previous slide in x-y coordinates
- ϕ regions (left) and θ regions (right)

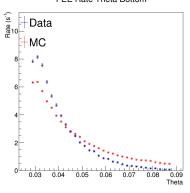

Normalization and Total Rates

- ▶ Data normalized based on time (7200 s), current (50 nA), blind (0.1), and deadtime (0.85)
- MC normalized based on time (calculated from file size), current (50 nA), and prescale (2¹¹)
- Below rates are consistent with slide 3 figure and figures that follow

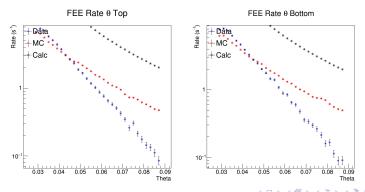
Region	Data (counts/s)	MC (counts/s)
All	866.6	1135.28
Phi Regions	146.9	125.8
Theta Top Regions	65.8	66.8
Theta Bottom Regions	66.8	65.6

FEE Rate of ϕ Regions

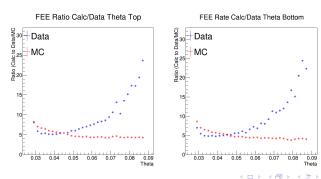

- Data has a higher rate in these regions
- ▶ Possible misalignment effects present


FEE Rate of θ Regions

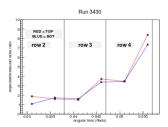
- ▶ For low θ , data rate is higher. Consistent with ϕ regions.
- ▶ For high θ , MC rate is higher. Consistent with slide 3 figures.



FFF Bate Theta Bottom


FEE Rates of Calculation Compared to Data or MC in θ

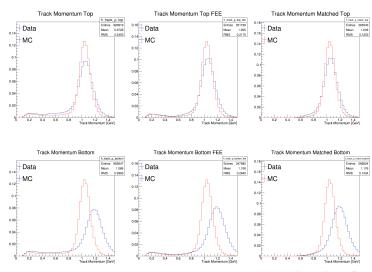
- Comparison of Calculation (Mott Scattering) Rates to Data and MC log scale
- ▶ MC and calcs have the same slope. Data is different
- ▶ Note: Calculation are off by an arbitrary factor


FEE Ratio of Calculation to Data or MC in θ

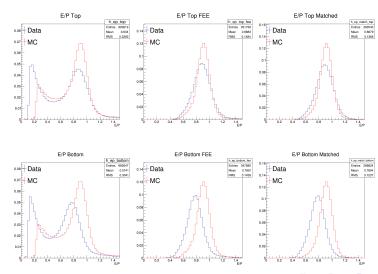
- Comparison of the ratios of Calculation (Mott Scattering) to Data and MC
- ightharpoonup Approximately constant ratio for MC. Ratio for data increases drastically with heta
- Note: Calculation are off by an arbitrary factor

Previous Results

▶ This appears to be constistent with Luca's previous results

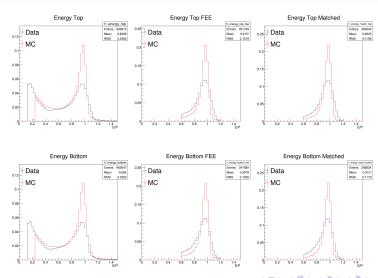

Conclusions

- Order of magnitude agreement between Data and MC for selected spherical regions
- \blacktriangleright Still unexplained effects MC and Data have different behaviors as a function of θ
- ▶ Still waiting for V2 detector and Pass2...


Stanford

FEE Rate Analysis

Track Momentum



E/P

FEE Rate Analysis

Energy

FEE Rate Analysis