Lessons from DarkLight for Invisible Dark Photon Searches

Jesse Thaler

PliT

NEXT Collaboration Meeting — December 4, 2015

Jesse Thaler — Invisible Dark Photon Searches

[Snowmass Report, 2013; NA48/2, 2015; see Pospelov, 2008]

[plot from Kahn, Krnjaic, JDT, Toups, 2014; see Pospelov, 2008]

Today's Goal

"Searching for an Invisible A' Vector Boson with DarkLight" Yonatan Kahn, JDT, 1209.0777

Lesson from DarkLight for Invisible A' Searches

Missing mass searches are hard

Full event reconstruction essential Streaming detector output seems necessary

Kinematics are somewhat counterintuitive

Want missing mass without missing momentum Optimal to match beam energy to dark photon mass

Background sources are somewhat surprising

Elastic & single photon backgrounds not showstoppers Elastic pileup negligible with negative mass-squared cut Dominant background is radiative diphoton production Therefore need efficient photon detection

Other invisible search strategies also look promising Dark matter beam experiments? Hermetic beam test setup?

Overview of DarkLight

Original DarkLight Concept

Narrow resonance on huge QED background

Prioritize full reconstruction of final state

Jesse Thaler — Invisible Dark Photon Searches

DarkLight Geometry

 10^{19} cm^{-2} thickness 10 mA of electrons $6 \times 10^{-35} \text{ cm}^{-2} \text{ sec}^{-1}$ $\approx 1 \text{ ab}^{-1}$ / month

Geant4 simulation of backscattered Mollers

• Solenoidal magnet

- Solenoidal magnet
- Be beampipe 1 mm thick

- Solenoidal magnet
- Be beampipe
 1 mm thick
- Proton silicon detector 300 micron thick

- Solenoidal magnet
- Be beampipe 1 mm thick
- Proton silicon detector 300 micron thick
- Lepton tracker
 4 layers
 GEM/Micromegas

- Solenoidal magnet
- Be beampipe
 1 mm thick
- Proton silicon detector 300 micron thick
- Lepton tracker
 4 layers
 GEM/Micromegas

Current Plan (starting 2016)

Phase Ia: Test ERL performance with gas target and solenoid

Phase Ib: Measure radiative Møller scattering on carbon foil target

Phase Ic: Measure QED background $e^-p \rightarrow e^-p e^+e^-$ with prototype GEM tracker and silicon p detector

Phase 2: Full visible $A' \rightarrow e^+e^-$ search Attempt invisible A' search

DarkLight Invisible Search

If you can measure the recoil proton...

$$m_{\rm miss}^2 = (p_1 + p_2 - p_3 - p_4)^2$$

[Kahn, JDT, 2012]

Jesse Thaler — Invisible Dark Photon Searches

But same ep final state as elastic scattering

 $e^- p \rightarrow e^- p \approx 2$ events per bunch @ 75 MHz

Screen with fast coincidence?

Streaming detector readout?

The Streaming Revolution?

e.g. Run 3 of LHCb

$$D^{*0} \rightarrow D^0 A'$$

 $A' \rightarrow e^+ e^-$

What you can do by reconstructing 30 billion $D^{*0} \rightarrow D^0 e^+ e^-$ decays

[Ilten, JDT, Williams, Xue, 2015]

				-
Particle	e^+/e^- MATERIAL: SEE PART	\$ LIST PHOTES: - DO NOT BREAK A		
Angular acceptance	$25^{\circ} - 165^{\circ}$	$5^{\circ} - \overset{\text{surface}}{89^{\circ}}$	ALL MACHINED SURFACES — 165	BA BA
Angular resolution	$\sigma_{ heta} = \sigma_{\phi} = 0.002$ igrade: J. Kelsey	$\sigma_{\theta} = 1/2 g_{12}$	SE SPECIFIED, A^{a}	Darklig
Energy/momentum resolution	$ \sigma_{p_T}^{\text{THIRD} \text{ ANGLE PROJECTION}} (p_T \mathcal{P}_{CHECKED BY}^{\text{DRAWN BY:}} MeV) $	$\sigma_{ m KE}/ m KE$ ractions $\sigma_{ m KE}/ m KE$	ALS: ANGLES a] Plo
Detection threshold	$p_T > 10 { m Me} { m Vr}$ for the by: -	$\mathrm{KE} > 1 \mathrm{MeV}^{1/32} \mathrm{V}^{1/32}$	$E^{100} > 5 \text{ MeV}$	
Detection efficiency	$100\%^{\mathrm{b}}$ TBE		AME: 95% ^c 1:1	Prototype
3	4	(optimistic?)	5	-

Jesse Thaler — Invisible Dark Photon Searches

Missing Mass Resolution

$$m = \sqrt{E^2 - p^2} \qquad \sigma_m^2 = \left(\frac{E}{m}\right)^2 \sigma_E^2 \oplus \left(\frac{p}{m}\right)^2 \sigma_p^2$$

Want as little missing momentum as possible!

$$E_{\rm miss}/m_{\rm miss} \equiv 1 + \Delta$$

$\boxed{\mathrm{m}_{\mathbf{A}'}~(\mathrm{MeV})}$	10	20	30	40	50	60	70	80
$\Delta_{ m cut} = 10$	4.0	3.7	2.6	1.8	1.3	0.92	0.66	0.35
$\Delta_{ ext{cut}} = 1$	3.0	2.5	2.1	1.6	1.3	0.92	0.66	0.35
$\Delta_{ m cut}=0.5$	2.1	1.8	1.5	1.4	1.2	0.92	0.66	0.35

Impact of Elastics and Single Photons

ep \rightarrow ep $m_{miss}^2 = 0$ ep \rightarrow ep + γ $m_{miss}^2 = 0$

Up to resolution effects, elastic and single radiative backgrounds are controllable Negative Mass Trick

Up to resolution effects, pileup has small impact on invisible search

Dominant Background: $ep \rightarrow ep + \gamma \gamma$

Unless you can veto photons, these are the same final state

Aim: 90–95% Photon Efficiency

15-cylinder geometry gamma P=20 MeV

Example Search: 50 MeV A' in $(g-2)_{\mu}$ band

Process	Raw (Hz)	Veto	Level 1 (Hz)	Level 2 (Hz)	50 MeV mass window (Hz)
ep	6.5×10^7	p	< 1	$< 10^{-2}$	$< 10^{-3}$
$ep\gamma$	5.0×10^{6}	γ	5.0×10^4	2.0×10^2	$< 10^{-3}$
$ep\gamma\gamma$	1.6×10^{5}	γ	1.7×10^2	77	2.4
epe^+e^-	6.6×10^{3}	e^-, e^+	1.2×10^2	2.3	$< 10^{-2}$
ep/ep	3.1×10^7	p, e^-	1.2×10^3	$< 10^{-2}$	$< 10^{-3}$
$ep/ep\gamma$	2.4×10^6	p, γ, e^-	4.1×10^2	$< 10^{-2}$	$< 10^{-3}$
$ep\gamma/ep\gamma$	2.4×10^5	γ, e^-	1.3×10^3	7.3	0.27
Total Background	7.1×10^7	_	5.0×10^4	2.8×10^2	2.7
Signal	5.4×10^{-2}	none	1.3×10^{-2}	1.3×10^{-2}	9.8×10^{-3}

backward going electron (to limit epγ rate) veto proton consistent with ep elastics veto any positron in acceptance veto photon above threshold veto nearby electrons (tail of pileup background)

exactly one positive missing mass reconstruction above 10 GeV

require missing energy to be not much larger than missing mass

Signal/Background Comparison

Apart from mass bump, no distinguishing features

Anticipated Invisible Reach

Competition to Missing Mass Searches

Rare Kaon Decays

(Might not be present if dark photon only couples to leptons)

Making Dark Matter Beams

Production in beam dump...

On-shell if $m_{\pi 0} > m_{A'} > 2m_{DM}$

...detection downstream

[Batell, Pospelov, Ritz, 2009; + deNiverville, 2011; + McKeen, 2012; Izaguirre, Krnjaic, Schuster, Toro, 2013]

LSND Reinterpretations

[using LSND, 2001; Kahn, Krnjaic, JDT, Toups, 2014]

Jesse Thaler — Invisible Dark Photon Searches

Another Approach to Missing Mass?

Extremely hermetic target/detector...

...leaves little doubt about (g-2)_µ

Lesson from DarkLight for Invisible A' Searches

Missing mass searches are hard

Full event reconstruction essential Streaming detector output seems necessary

Kinematics are somewhat counterintuitive

Want missing mass without missing momentum Optimal to match beam energy to dark photon mass

Background sources are somewhat surprising

Elastic & single photon backgrounds not showstoppers Elastic pileup negligible with negative mass-squared cut Dominant background is radiative diphoton production Therefore need efficient photon detection

Other invisible search strategies also look promising Dark matter beam experiments? Hermetic beam test setup?