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In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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of MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon) [41, 59]. Such models
readily account for the stability of dark matter and its
observed relic density, are compatible with observations,
and have important implications beyond the dark matter
itself. In these scenarios, high energy accelerator probes
of sub-GeV dark matter are as ine↵ective as direct detec-
tion searches, because the missing energy in dark matter
pair production is peaked well below the Z ! ⌫⌫̄ back-
ground and is invisible over QCD backgrounds[60, 61].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [62], rare kaon decays [63], precision (g � 2) mea-
surements of the electron and muon [64, 65], neutrino ex-
periments [16], supernova cooling, and high-background
analyses of electron recoils in direct detection [56]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimistic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)

µ

anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
quires a small 1 m3-scale (or smaller) detector volume
tens of meters downstream of the beam dump for a high-
intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic
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(or less) downstream of the Hall A dump has interesting
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Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
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in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.
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dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
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DM production at LCLS-II Beam Dump

I will show yields for two detector placement geometries

Near (cross section view)

beam line

Far (cross section view)

10 cm

detector
detector

And for two detection channels for each geometry and model scenario: 
Electron recoils and Nucleon recoils (ER > 10 MeV for each)

50 cm
50 cm



Light Thermal DM

In the early universe, DM in thermal contact with the SM

DM “freezes-out” at late times when its annihilation rate into SM smaller than expansion rate

The requirement to obtain today’s DM’s observed abundance sets a minimum annihilation rate

DM

DM

A0⇤
e+

e�

Example: scalar QED scenario, assuming 2mDM < m0
A

We then need

h�vi = h�vimin

where               is the required rate for today’s abundanceh�vimin



Light Thermal DM

DM
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gives an annihilation rate which goes as
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Then, for fixed DM mass 
annihilation rate invariant  

under the dimensionless combination



Light Thermal DM Target
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Conservative Presentation of  Existing Constraints

The DM annihilation rate gives a thermal-relic DM target that is invariant under y 
for fixed DM mass

However, the sensitivity of  different experiments does not usually scale simply with y  

Example: B-factories

e+

e�

�

A0

This search is sensitive only to ✏2



Conservative Presentation of  Existing Constraints

To compare B-factories sensitivity to the thermal-relic target 
must make assumptions on the other model parameters to compute “y”

In what follows, to be conservative and not overstate any one experiment’s sensitivity 
we choose O(1) values for the other parameters

m'

mA0
=

1

3

y = ✏2↵D
m4

'

mA0
Recall

dark gauge coupling much larger runs non-perturbative

much smaller ratio overstates B-factories’ bounds

↵D = 0.1



LCLS-II DM yields: Scalar QED Model
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LCLS-II DM yields: Scalar QED Model
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LCLS-II DM yields: iDM Model
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LCLS-II DM yields: iDM Model
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Note

The signal yields I showed were for a “worst case” scenario

In particular, the variable “y”, for beam dump experiments  scales as ✏4↵D

Example

Meanwhile 

y(thermal) stays constant

If  you let ↵D = 0.1 ! 0.01

y !
p

0.01/0.1y



Supplement



Hidden Sector Paradigm

An increasingly popular effort to probe beyond the SM physics that lives in a “dark sector”

Us Dark Sector

Mediator

Well-motivated by e.g. light (thermal) DM 
For light DM interactions between the DS and SM mediated by a light field

One organizing principle for probing it: focus on dimension-4 operators:  
vector portal, Higgs portal, neutrino portal

I will focus on the vector portal



The Vector Portal

Can connect the dark sector to us through kinetic mixing

L = LSM � ✏Y
2
F 0µ⌫Bµ⌫ � 1

4
F 0µ⌫F 0

µ⌫ +
1

2
mA0A02

Can re-define the kinetic mixing term away by

Bµ ! Bµ + ✏Y A
0µ

Inducing a coupling between the dark photon and SM fermions

gA0f̄f ⇠ ✏eQf

where ✏ ⌘ ✏Y cos ✓W



Matter in the Dark Sector: Two scenarios 

1. Scalar QED

A complex scalar field with (dark) vector current J µ
D = i'⇤@µ'+ c.c.

and mass �m2
''

⇤'

We then have the following interactions for the dark photon

Lint = A0
µ(✏eJ

µ
EM + gDJ µ

D)



2. Inelastic Dark Matter

Matter in the Dark Sector: Two scenarios 

Fermionic iDM (analogous case for scalar iDM)

Gauge invariance only allows a Dirac mass 
But when symmetry is spontaneously broken can also write Majorana mass

�L � mD⌘⇠ +
m⌘

2
⌘⌘+

m⇠

2
⇠⇠ + h.c.

Start with a Dirac fermion  =
�
⌘ ⇠†

�
charged under a U(1)D symmetry

The (dark) vector current is diagonal

J µ
D =  �µ = ⌘†�µ⌘ � ⇠†�µ⇠



2. Inelastic Dark Matter

Matter in the Dark Sector: Two scenarios 

The mass eigenstates

�1 = i(⌘ � ⇠)/
p
2 , �2 = (⌘ + ⇠)/

p
2

now have (dominantly) off-diagonal interactions

J µ = i(�†
1�

µ�2 � �†
2�

µ�1)
�1 �2

A0
Interactions

Lint = A0
µ(✏eJ

µ
EM + gDJ µ

D)



Keeping track of  free parameters

DM mass: m'/m�

Excited state mass (for iDM): m�⇤ = m� +�

Dark photon mass: mA0

Kinetic mixing: ✏

Dark gauge coupling ↵D ⌘ g2D
4⇡

How do we analyze the parameter space of  these models? 
Fortunately, a thermal-relic DM target simplifies this task!



What do we know about the DM mass?

Hubble-sized axion-like particle - Black hole/MACHO

Unfortunately many of  these scenarios are undiscoverable

But, a thermal origin give us a target to aim for

> 10 TeV DM

and/or nonperturbative
<10 keV DM too hot

spoils structure formation
overproduced

Thermal Origin is PredictiveTesting Thermal DM

5

(an overly simplified view)

Nod bad if we only care about testing WIMPs...

10 TeV1 MeV 1 GeV MZ

“Direct Detection”

Laboratory probes that reach “milestone sensitivity”:
(will discuss colliders momentarily)

“WIMPs”

5Wednesday, 10 June, 15

Feature # 2: most  masses can’t be thermal

Equilibrium reduces viable mass & coupling range

Viable Thermal Models

Wednesday, June 24, 15

Below 10’s KeV: too hot DM, can spoil structure formation

Above 10-100 TeV: over-closure and/or unitarity bound

This talk: MeV - GeV range target of  opportunity



Light Thermal DM

In the early universe, DM in thermal contact with the SM

DM “freezes-out” at late times when its annihilation rate into SM smaller than expansion rate

The requirement to obtain today’s DM’s observed abundance sets a minimum annihilation rate

DM

DM

A0⇤
e+

e�

Example: scalar QED scenario, assuming 2mDM < m0
A

We then need

h�vi = h�vimin

where               is the required rate for today’s abundanceh�vimin



Light Thermal DM

DM

DM

A0⇤
e+

e�

gives an annihilation rate which goes as

h�vi / ✏2↵D
m2

'

m4
A0

= ✏2↵D
m4

'

m4
A0

1

m2
'

=
y

m2
'

y = ✏2↵D
m4

'

mA0

Then, for fixed DM mass 
annihilation rate invariant  

under the dimensionless combination



Light Thermal DM Target

21

The Thermal Origin Target
(for vector portal)

Scala
r

Ferm
ion

1 10 102 103
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3

DM Mass m c HMeVL

e2
a D
Hm c
êm A

'L4
Thermal Relic DM Wc = Wc = WDM ê 2

Invariant & important 
targets!

computed precisely for
mA"/m�=3 (but largely 
insensitive to this ratio)

21Wednesday, 4 February, 15

Thermal Target

�

Wednesday, June 24, 15



Conservative Presentation of  Existing Constraints

The DM annihilation rate gives a thermal-relic DM target that is invariant under y 
for fixed DM mass

However, the sensitivity of  different experiments does not usually scale simply with y  

Example: B-factories

e+

e�

�

A0

This search is sensitive only to ✏2



Conservative Presentation of  Existing Constraints

To compare B-factories sensitivity to the thermal-relic target 
must make assumptions on the other model parameters to compute “y”

In what follows, to be conservative and not overstate any one experiment’s sensitivity 
we choose O(1) values for the other parameters

m'

mA0
=

1

3

y = ✏2↵D
m4

'

mA0
Recall

dark gauge coupling much larger runs non-perturbative

much smaller ratio overstates B-factories’ bounds

↵D = 0.5



DM production at LCLS-II Beam Dump

New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter

Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

(Dated: November 19, 2013)

In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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I’m assuming the dump is made out of  aluminum

Detection takes place at a 50cm x 50 cm x 200 cm CsI prototype

Production Detection2

of MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon) [41, 59]. Such models
readily account for the stability of dark matter and its
observed relic density, are compatible with observations,
and have important implications beyond the dark matter
itself. In these scenarios, high energy accelerator probes
of sub-GeV dark matter are as ine↵ective as direct detec-
tion searches, because the missing energy in dark matter
pair production is peaked well below the Z ! ⌫⌫̄ back-
ground and is invisible over QCD backgrounds[60, 61].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [62], rare kaon decays [63], precision (g � 2) mea-
surements of the electron and muon [64, 65], neutrino ex-
periments [16], supernova cooling, and high-background
analyses of electron recoils in direct detection [56]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimistic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)

µ

anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
quires a small 1 m3-scale (or smaller) detector volume
tens of meters downstream of the beam dump for a high-
intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon). Such models readily
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relic density, are compatible with observations, and have
important implications beyond the dark matter itself. In
these scenarios, high energy accelerator probes of sub-
GeV dark matter are as ine↵ective as direct detection
searches, because the missing energy in dark matter pair
production is peaked well below the Z ! ⌫⌫̄ background
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neutrino factories and optimisitic projections for future
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mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged parti-
cles. This includes a swath of light force carrier parame-
ters motivated by the (g�2)
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anomaly, extending beyond
the reach of proposed neutrino-factory searches and Belle
II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
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beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged parti-
cles. This includes a swath of light force carrier parame-
ters motivated by the (g�2)

µ

anomaly, extending beyond
the reach of proposed neutrino-factory searches and Belle
II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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Current Constraints

LHC: monojet + MET recast at 8 TeV with 20/fb

LEP: shift in the mass of  the Z boson arising from mixing with A’

E787 and E949: Rare Kaon decays into a pion and missing energy

Babar: Monophoton bump search recast

CMB: late time annihilation DM DM > leptons modifies the power spectrum

LSND: ~ 800 MeV proton beam-dump experiment. Production of  A’ 
from decay or neutral pions

SIDM: Bound from bullet cluster sets an upper bound on DM self-interaction


