Bertrand's Wish List

Gordan Krnjaic

NEXT Meeting Jan 15, 2016

Overview

- Qualitative Signal Features
- NaI, CsI, LAr, LXe, Si, Plastic Scintillator

Setup Reminder

$$\mathcal{L}_{dark} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F_{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + \bar{\chi} (i \not\!\!D - m_{\chi}) \chi,$$

This talk: Rate comparison of different channels Assuming elastic fermion DM scattering

Electron Recoils: Signal Characteristics

$$\frac{d\sigma}{dE_e} \simeq \frac{4\pi\epsilon^2 \alpha \alpha_D [2m_e (E_{\chi}^2 - E_{\chi} E_e) - m_{\chi}^2 E_e]}{E^2 (m_{A'}^2 + 2m_e E_e)^2}$$

Flat & Forward Peaked

$$\cos \theta_e = \frac{E_{\chi} E_R - m_e (E_{\chi} + m_e - E_R)}{\sqrt{(E_{\chi}^2 - m_{\chi}^2)(E_R^2 - m_e^2)}}$$

$$\cos\theta_e(E_{\chi,R} \gg m_e) \to \frac{E_{\chi}E_R}{E_{\chi}E_R} - \mathcal{O}\left(\frac{m_e}{E_{\chi}}\right) \approx 1$$

beam dump limit : light target, fast projectile $\theta_e \approx 0$

Nucleon Recoils: Signal Characteristics

Nucleon Recoils: Signal Characteristics

Distribution "breaks" near $Q^2 \sim m_{A'}^2 \implies T_{N,\text{knee}} \sim \frac{m_{A'}^2}{2m_p}$

For benchmarks $m_{A'} = 3 \text{ MeV}, 30 \text{ MeV}, 150 \text{ MeV}$

 $T_{N,\text{knee}} \sim 5 \text{ keV}$, 0.5 MeV, 12 MeV

To account for quasi-elastic binding effect, shift by~ O(MeV)

Coherent: Signal Characteristics

Most scattering is "glancing"

$$\cos \theta_N = \frac{E_{\chi} E_R - m_N (E_{\chi} + m_N - E_R)}{\sqrt{(E_{\chi}^2 - m_{\chi}^2)(E_R^2 - m_N^2)}}$$
lab-frame scattering angle

$$\cos \theta_N (m_N \gg E_{\chi}) \rightarrow \sqrt{\frac{E_R - m_N}{E_R + m_N}} \approx \frac{v_N}{c}$$

 $\theta_N \approx 90^{\circ}$
beam dump limit (heavy target)

Coherent: Signal Characteristics

Difference due DM production variation for different mediator masses

Coherent: Signal Characteristics

Differential Cross Section

Tsai Form Factor (with atomic form factor)

$$G_{2,el}(t) = \left(\frac{a^2t}{1+a^2t}\right)^2 \left(\frac{1}{1+t/d}\right)^2 Z^2,$$

$$d = 0.164 \text{ GeV}^2 A^{-2/3},$$

$$a = 111 Z^{-1/3}/m_e,$$

$$\frac{d\sigma}{dQ^2} \simeq (4\pi\epsilon^2 \alpha \alpha_D) \frac{G_{\text{Tsai}}}{[m_A^2 + Q^2]^2}$$
$$T_{\text{Knee}} \sim \frac{m_{A'}^2}{2m_{\text{Nucleus}}}$$

e.g. Carbon 12

 $m_{A'} = 3 {
m MeV}, 30 {
m MeV}, 150 {
m MeV}$ $T_{N,{
m knee}} \sim 0.4 {
m keV}, 40 {
m keV}, 1 {
m MeV}$

Cross Section vs. Threshold, CsI

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, CsI

Geometric Acceptance $\sim 0.5\%$ for Al dump, not included above

Cross Section vs. Threshold, CsI

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, NaI

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, NaI

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, NaI

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, LAr

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, LAr

Geometric Acceptance $\sim 0.5\%$ for Al dump, not included above

Cross Section vs. Threshold, LAr

Geometric Acceptance $\sim 0.5\%$ for Al dump, not included above

Cross Section vs. Threshold, LXe

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, LXe

Geometric Acceptance $\sim 0.5\%$ for Al dump, not included above

Cross Section vs. Threshold, LXe

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, Plastic

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, Plastic

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, Plastic

Geometric Acceptance $\sim 0.5\%$ for Al dump, not included above

Cross Section vs. Threshold, Si

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, Si

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, Si

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, All

Geometric Acceptance $\sim 0.5\%$ for Al dump, not included above

Cross Section vs. Threshold, All

Geometric Acceptance ~0.5% for Al dump, not included above

Cross Section vs. Threshold, All

Geometric Acceptance ~0.5% for Al dump, not included above

Caveats/Comments

• "Morally correct" to convolve with acceptance beam profile Here we use single energy ~ 2 GeV, since this makes tiny difference

Mainly matters for heavy mediator & DM regime (where we have less sensitivity)

- Computing rates requires relative Z/A factors for number densities of each species. May change ranking depending on detector molecules (easy to rescale)
- Here focus is 2-2 scattering cross sections only. Folding in acceptance is a factor in deciding detector material etc.
- Requests are welcome (materials, energies, data points etc.)