A High Granularity Silicon Calorimeter

CMS HL-LHC Upgrades

HL-LHC luminosity goals: Leveling vs nominal

JRI - HGC - SLAC -19 Feb 2016

Ultimate luminosity represents ~ 30% gain in operation time to reach expected additional integrated luminosity of ~ 2500 fb⁻¹

Design for operation up to ~200 PU, with Phase-I equivalent performance at 140 PU, possible moderate degradation above 140 PU to 200 PU and radiation tolerance ≥ 3000 fb⁻¹

Phase 2 Radiation dose - neutron fluence - particle rates

- 3000 fb⁻¹ Dose map in [Gy] simulated with MARS and FLUKA
 Numbers in boxes indicate maximum doses neutron equivalent fluence
 - particle rates (for 5 x 10³⁴ Hz/cm²) seen by the various detectors

Studies show that Tracker & End Cap Calo must be

CMS@HL-LHC

Muon system

• Complete RPC coverage in region 1.5 < η < 2.4 Add muon taggin 2.4 < η < 3

Trigger/DAQ

- 12.5 µs L1 latency • L1 up to 0.75 MHz • HLT up to ~10 KHz
- Tracking at L1

Replace Endcap Calorimeters

- Rad. Tolerant
- High granularity
- 3D capability

Tracker

- Higher granularity
- $\frac{1}{2}$ the material
- Better p_T resolution
- Extend to $|\eta| \sim 3.8$
- Track trigger at L1
 - 40 MHz p_T ≥ 2

Upgrading the CMS Endcap Calorimetry High Granularity and Backing Calorimeter

Drivers for Endcap Upgrade

- Selected physics drivers
 - Jet reconstruction at 140 pileup (particularly for vectorboson-fusion and vector-boson-scattering studies)
 - Electron and photon reconstruction and id for Higgs (H→_Xy, H→ZZ→eell) at 140 pileup
 - Missing transverse energy at high pileup, for dark-matter searches/studies
- Technical drivers
 - Very high radiation dose: current CMS endcap calorimeters lose > 90% of signal amplitude over large portions of detector if kept for HL-LHC era
 - Increased L1 readout rate (100 kHz increases up to 750 kHz) and longer L1 trigger latency (3 µs increases to 12.5 µs)

Overview of the Upgrade

Motivation for the Upgrade

- Radiation damage will greatly reduce the energy resolution of the endcap calorimeters after 500 fb⁻¹
- Segmentation and performance is marginal for management of HL-LHC pileup conditions

High Granularity (HGC) & Back Hadron (BH)

3D shower measurement in HGC

IRI - HGC - SLAC -19 Feb 2016

- Electromagnetic EE (26 X_o , 1.5 λ): 28 layers of Silicon-W/Cu absorber
- Front Hadronic FH (3.5 λ): 12 layers of Silicon/Brass
- Back Hadronic BH (5 λ): 12 layers of Scintillator/Brass (2 depths readout)

3 sensor active thicknesses 100-200-300 μm 0.5(1) cm² pads for 100(200/300) μm

Si-HGC

EM Resolution, transverse shower size

Si-HGC Event Displays

In this talk I will be discussing recent results with PandoraPFA integrated in CMSSW (CMSPandora), some of the road to getting there, and the road still to go. Lindsey Gray, FNAL

Precision Timing

T₀ for 100fC signal RMS 50ps

Potential to assist in the removal of pileup and location of interaction vertices

HGC Trigger performance

Expect improvements compared to present detector, particularly benefit where no (or less efficient) Track-Trigger (e.g γ , & VBF/S jets beyond η = 2.4)

• Trigger data: 2(2x2) pad sums (inner/outer) from alternate layers in EE/FH, full

 e/γ rate x 2.5 Phase-I (similar efficiency)

Jet trigger x 2 Phase-I

VBF Jets

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 101 Lumi section: 2

Reconstructed jet using current

PFCandidate 170.

pdg = 22 Y

 $p_1 = 44.70$ ela = 2.164

phi = 1.101

Ex. of untapped potential

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 101 Lumi section: 2

"x-ray" view of clusters with weighting by pulse height

Multiple narrow shower cores <u>clearly</u> seen that are not currently identified! Still room for improvement.

ak4GenJet 0 et = 99.59 eta = 2.163 phi = 1.125	genParticle 15 pdg = 2 pt = 70.51 eta = 2.143 phi = 1.113
	genParticle 6, pdg = 2 pt = 98.99 eta = 2.158 phi = 1.125

Performance for Electromagnetic Objects

- Electromagnetic object performance at high pileup is important for Higgs physics in the HL-LHC era
 - Access to low-momentum electrons allows broader use of H→ZZ→eell

Performance for Jets

- For jets, the upgrade substantially restores the baseline performance of the detector, even at 140 PU
 - Low p_T region is important for vector-boson-fusion production of Higgs and other new particles, and crucial for vector boson scattering studies
 - Timing capability should further enhance pileup rejection

Conceptual design from Technical Proposal

Calorimeter Silicon Sensors

- Calorimeter sensor design is driven by balance of cost, radiationdamage and keeping pad capacitance low to control noise
 - Primary calibration/monitoring technique is based on MIP tracks in the detector
 - Three regions in detector with different active thickness (300, 200, 100 um) with 100 um sensors having smaller pad sizes

Sensor Status

- HPK 6" 128 ch. p-on-n
 - sensors in hand @FNAL
 - FNAL 128 ch. probe card commissioned, now testing
- 6" 256 ch. p-on-n design
 - Near final
 - Displaced pad contact enabling holefree surface area for PCB components
- 8" 128 ch. n-on-p
 - Finalized
 - Proceed with ordering prototypes from Infineon, HPK and Novati

Study Noise & Coupling Capacitance for different inter-pad spacing - Sensors of 320 μ m and 200 μ m active thickness with 1cm² pads and 120 μ m with 0.5 cm² pads

Sensor news

6" HPK 128 ch sensor at FNAL

- 256 ch. Sensor design with displaced pad contacts:
 - Simulations look very good!

Route Out Proposal

Current plan for jumper locations

Status of other components

- Printed circuit board
 - 40 now being manufactured
 - Same company will load all components except SKIROCs
 - PCB will be 1.3 mm thickness (1.2 mm originally quoted)
- Other components
 - W/Cu Baseplates in hand
 - Au-plated Kapton in hand
 - Cover plates in progress
 - Using 3D CAD file of PCB with all components
 - First pieces expected end of Feb.
- Will be ready in time for test beam module production

Silicon Calorimeter Modules

- Silicon modules combine two sensors
 - Construction simple relative to tracker modules – packaged ICs on standard PCBs rather than hybrids and HDIs
- Integrated readout chip contains trigger primitive calculation and L1 pipeline
 - Baseline ASIC uses Time-over-Threshold section and is capable of 50ps timing for EM showers

HGC Module Assembly Status

Modified 8"wire-bonding jig to accommodate 6" prototypes

UCSB gantry refurbished, now up and running

- New LabVIEW interface: basic assembly functions being developed
- Nordson/EDF Ultimus V glue dispenser for the gantry in LabVIEW
- Full set of module assembly jigs in hand

Status of Module Assembly (1)

- Development of assembly and test procedures is the main R&D focus
- PCB layout work is ongoing
- Validation of epoxies and application steps are investigated for the test beam and pre-series modules

Status of Module Assembly (2)

- Development of assembly and test procedures is the main R&D focus
- PCB layout work is ongoing
- Validation of epoxies and application steps are investigated for the test beam and pre-series modules

Step 1: Glue Kapton to Cu/W baseplate Photo: Glue dispensing on baseplate

Assembly Steps

Step 2: Glue Sensor to Module Photo: Glue dispensing on Kapton

> Step 3: Glue PCB to Sensor Photo: Glue dispensing on sensor

Finished (dummy) module

Module assembly fixtures

3 base fixtures for performing 3 glue steps per day

- Current capacity
 1 module per day
- Need to double?
- CERN test beam schedule has advanced

Silicon Calorimeter Cassettes

- Modules are integrated onto cassettes including CO₂ cooling pipes, PCBs which carry LV and high speed serial data streams
- Cassettes are inserted into the support matrix
 - Carbon-fiber+tungsten for EE
 - Brass plates for FH
- Cooling pipes, LV, HV, and readout are all integrated onto calorimeter which is then mounted as unit onto the CMS endcap yoke

Development for Cassettes and Services

- To achieve a compact design, the cassettes should efficiently integrate as much of the services as possible
 - CO₂-based cooling including "flowrestrictors" required for system stability
 - DC-DC conversion, ideally at the edge of the cassette
 - Electrical/optical data conversion, behind the calorimeter or at the edge of the cassette
 - Services can have significant impact on design
- Cassette and services R&D will continue over the next few years leading to TDR

R & D overview

- Silicon calorimetry has been extensively studied in the ILC context by the CALICE collaboration and others
- For use in the HL-LHC environment, radiation and readout challenges must be addressed
 - Dedicated radiation studies have demonstrated the sensor functionality to the necessary fluence
 - Performance in a calorimeter will be tested in a series of beam tests beginning in the winter
- Radiation tests for scintillator technology are ongoing (low dose rate is essential for reliable results

HGC e/γ new ID information, new ID variables

○ And to mitigate PU use trans. granularity - cells in $\leq 1.5R_M$ - H/E in tight cone 0.05

*CMSSW software developments are at a very early stage, clustering, link to charged tracks and PU mitigation potential at layer level is far from being fully exploited in current studies

Electron and Photon performance

Electron efficiency recovered with smooth decrease up to 200 PU

BDT efficiency for DY electrons and for Jets (left) and BDT efficiency for γ and Jet fake rate for a WP at ~ 85% efficiency (right)

Ο

Backing Calorimeter

- Backing Hadron Calorimeter can be constructed quite similarly to existing HE: plastic scintillator tiles with WLS readout
 - Expected radiation dose is reduced by FH calorimeter absorbing the first 5 λ
 - Active materials with better radiation tolerance will be used
- To limit the duration of LS3 and simplify mechanics design, construct new electronics heavily based on Phase 1 upgrade which can be integrated with overall calorimeter construction

- Containment of 68%
 - Jet radius is a few cm for parton p_T above 500 GeV

*From studies for 100 TeV pp collider

- Compare size to separation
 - Sum of radii at 68% containment of b and 'W' daughters, over b-W separation:
 - Large overlap independent of mass
 - But relevant distance scale falls dramatically with p_T (see plot at left)

And 100 TeV