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HL-LHC luminosity goals: Leveling vs nominal

“Ultimate” leveling / [Ldt/year (fb?)
7.5 x 1034 (Hz/cm?) S 160 days operation
200PU

“Nominal” Leveling
5 x 103* (Hz/cm?)
140 PU

Fill duration (h)

Ultimate luminosity represents = 30% gain in operation time to reach
expected additional integrated luminosity of = 2500 fb?

Design for operation up to ~200 PU, with Phase-l equivalent
performance at 140 PU, possible moderate degradation above 140
PU to 200 PU and radiation tolerance = 3000 fb
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Phase 2 Radiation dose - neutron fluence - particle rates

o Studies show that Tracker & End Cap Calo must be

replaced

=1 Grad - = 2 x 10'® neq/cm? - = 2 GHz/cm?

= 150 Mrad
=1 x 10 neq/cm?
=100 MHz/cm?2

= 30 Mrad

= 10kHz/cm?

=100 kHz in meO

e = 1 kHz/cm?

= 1 Grad




CMS@HL-LHC

Muon system Tracker
* Higher granularity
* Complete RPC 1/ the material
coverage in region * Better p; resolution
1.5<N<2.4 * Extend to |n|~3.8
* Add muon tagging *Track trigger at L2
2.4<MN<3 *40 MHz p;22
Trigger/DAQ

*12.5 s L1 latency

*L1uptoo.75 MHz

*HLT up to ~10 KHz
*Tracking at L1

Replace Endcap
Calorimeters

* Rad. Tolerant
* High granularity

* 3D capability



Upgrading the CMS Endcap Calorimetry

High Granularity and Backing Calorimeter



Drivers for Endcap Upgrade

» Selected physics drivers
= Jet reconstruction at 140 pileup (particularly for vector-
boson-fusion and vector-boson-scattering studies)
= Electron and photon reconstruction and id for Higgs
(H—yy, H—=ZZ—eell) at 140 pileup
= Missing transverse energy at high pileup, for dark-matter
: searches/studies
- = Technical drivers
= Very high radiation dose: current CMS endcap
calorimeters lose > 9o% of signal amplitude over large
nortions of detector if kept for HL-LHC era
= |ncreased L1 readout rate (100 kHz increases up to 750

kHz) and longer L1 trigger latency (3 us increases to 12.5
1S)
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Overview of the Upgrade

Endcap Calorimetry
Current: PbWo, crystal ECAL+
plastic-scintillator/WLS HCAL

Upgrade: Silicon-based ECAL
and front HCAL, plastic-
scintillator/WLS back HCAL




Motivation for the Upgrade

= Radiation damage will greatly
reduce the energy resolution of the
endcap calorimeters after 5oo b

= Segmentation and performance is
marginal for management of HL-
LHC pileup conditions
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High Granularity (HGC) & Back Hadron (BH)

o 3D shower measurement in HGC

—  Electromagnetic EE (26 X, 1.5A): 28 layers of Silicon-W/Cu absorber
—  Front Hadronic FH (3.5 A): 12 layers of Silicon/Brass

- Back Hadronic BH (5 A): 12 layers of Scintillator/Brass (2 depths readout)

~20k channels — ~6.3M ch. @HL-LHC

EE: 380 m? - 4.3 Mch - 13.9k modules - 16t

FG: 209 m? - 1.8 Mch - 7.6k modules - 36.5t
BH: 428 m? - 5184 SiPMs

3 sensor active thicknesses 100-200-300 um
0.5(1) cm? pads for 100(200/300) um
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Relative energy resolution

SI-HGC

EM Resolution, transverse shower size

Resolution has large stochastic term
but low constant term
NB: In endcap E large even if E;low
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EM shower size is initially very small
NB: potential for good reconstruction
of boosted objects and even for
isolating neutral hadrons in HG
hadronic layers
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Si-HGC Event Displays

Si-HGC extends Tracking into Calorimeter

Provides good cluster energy resolution,
very detailed topological information
and excellent two-particle cluster resolving power

Ideally suited for Particle Flow reconstruction
in a high particle density environment



Showers with the HGCal

MIP tracks and clusters clearly
/ identifiable by eye throughout

most of detector.

the longitudinal shower footprint

high pr jet
O(500 GeV) —~—,

In this talk | will be discussing recent results with PandoraPFA integrated in CMSSW (CMSPandora),

some of the road to getting there, and the road still to go.
2 Lindsey Gray, FNAL
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Precision Timing

T, for 100fC signal
RMS 50ps

Cdet= 50pF
I 9uA

leak™

Potential to assist in the removal of
pileup and location of interaction vertices

em showers

E(y)=100 GeV
Cell A;~50-100 ps
= Cluster A,~10-20
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Very long tail in the i)
hadron timing!

pion Showers

perfect clusters
energy weighted!
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HGC Trigger performance B

Expect improvements compared to present detector, particularly benefit
where no (or less efficient) Track-Trigger (e.g v, & VBF/S jets beyond n =

2.4)

o Trigger data: 2(2x2) pad sums (inner/outer) from alternate layers in EE/FH, full
BH

'ﬁ' 7\!\\\!\\\i\\\!\\\i\\\i\\\i\\\i\\\!\\:
R N L O I O
e 10t .~ Phase-1 (40 PU). —
R S —HGCal (140 PU) - =
G i e e
10 =
2 e e
"ok
I | s mranes R S Brarac N A

A A I R I IR v :
20 40 60 80 100 120 140 160 180
E+' threshold [GeV]

e/y rate x 2.5 Phase-I (similar efficiency) Jet trigger x 2 Phase-|



VBF Jets



Ex. of untapped potential



Performance for Electromagnetic Objects

» Electromagnetic object
performance at high pileup is
important for Higgs physics in
the HL-LHC era

= Access to low-momentum electrons
allows broader use of H—=ZZ—eell

17



Performance for Jets

= For jets, the upgrade substantially restores the
baseline performance of the detector, even at 140
PU

= Low p;region is important for vector-boson-fusion
production of Higgs and other new particles, and crucial
for vector boson scattering studies

= Timing capability should further enhance pileup rejection B
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Conceptual design from Technical Proposal

= Silicon/tungsten
electromagnetic
calorimeter (EE)
= 28 layers with varying X
thickness (average 1.0)
» Silicon/brass hadron
calorimeter (FH)
= 12 sampling layers
separated by 0.3 A
» Scintillator/brass hadron
calorimeter (BH)
= 12 sampling layers
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Calorimeter Silicon Sensors

» (alorimeter sensor design is driven
by balance of cost, radiation-
damage and keeping pad
capacitance low to control noise

= Primary calibration/monitoring
technique is based on MIP tracks in the
detector

= Three regions in detector with different
active thickness (300, 200, 200 um) with
100 um sensors having smaller pad sizes
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Sensor Status

» HPK 6”128 ch. p-on-n ,
= sensorsin hand @FNAL
= FNAL 128 ch. probe card_ Low Radiation: High Radiation:
commissioned, now testing thick sensors thin sensors
= 6 256 Ch. p-on-n design (300 pum) with (100 um), half-
« Near final large cells size cells to
reduce
= Displaced pad contact enabling hole- capacitance
free surface area for PCB components
= 8”128 ch. n-on-p Medium Radiation:
= Finalized thinner sensors (200 pum)

to reduce volume for
thermal noise,
keep large cells

= Proceed with ordering prototypes
from Infineon, HPK and Novati

Study Noise & Coupling Capacitance for different inter-pad
spacing - Sensors of 320 um and 200 um active thickness with
1cm? pads and 120 pm with 0.5 cm? pads

Adapted from M. Paulini — Talk at FNAL Director’s review last week 21
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Sensor news

= 256 ch. Sensor design with
displaced pad contacts:
= Simulations look very good!

6” HPK 128 ch sensor at FNAL



Jumper Close-up
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Current plan for jumper locations

2/19/16
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Status of other components

* Printed circuit board
= 40 now being manufactured

= Same company will load all
components except SKIROCs

* PCB will be 1.3 mm thickness
(1.2 mm originally quoted)

» Other components
= W/Cu Baseplates in hand
= Au-plated Kapton in hand

= Cover plates in progress

* Using 3D CAD file of PCB with all
components

* First pieces expected end of Feb.
= Will be ready in time for test
beam module production
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Silicon Calorimeter Modules

Silicon modules combine two sensors

Construction simple relative to tracker
modules — packaged ICs on standard
PCBs rather than hybrids and HDIs

Integrated readout chip contains

trigger primitive calculation and L1
pipeline

Baseline ASIC uses Time-over-Threshold
section and is capable of sops timing for
EM showers
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HGC Module Assembly Status

Modified 8”wire-bonding jig to

accommodate 6” prototypes

UCSB gantry refurbished, now up and running

 New LabVIEW interface: basic assembly functions being developed
* Nordson/EDF Ultimus V glue dispenser for the gantry in LabVIEW
* Full set of module assembly jigs in hand

27
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Status of Module Assembly (1)

= Development of assembly and test
JTef'°” P2d  procedures is the main R&D focus

Alignment

ok = PCB layout work is ongoing

= Validation of epoxies and application
steps are investigated for the test
\mcmdjusters beam and pre-series modules

Director's Review -- Calorimetry -- HGC Modules N. Akchurin, 3 Feb 2016

28
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Status of Module Assembly (2)

= Development of assembly and test
jTef'°“ P2d procedures is the main R&D focus

Alignment

Vs = PCB layout work is ongoing

= Validation of epoxies and application
steps are investigated for the test
\mcmadjusters beam and pre-series modules

Director's Review -- Calorimetry -- HGC Modules N. Akchurin, 3 Feb 2016

29



Step 1: Glue Kapton to Cu/W baseplate

Photo: Glue dispensing on baseplate ASSe m b |y Ste pS

Step 2: Glue Sensor to Module
Photo: Glue dispensing on Kapton

Step 3: Glue PCB to Sensor
Photo: Glue dispensing on sensor



Finished (dummy) module



Module assembly fixtures

3 base fixtures for performing 3 glue steps per day e Current
capacity

* 1 module per day

* Needto

double?
* CERN test beam

schedule has
advanced
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Silicon Calorimeter Cassettes

* Modules are integrated
onto cassettes including
CO, cooling pipes, PCBs
which carry LV and high
speed serial data streams

s (Cassettes are inserted into
the support matrix

= Carbon-fiber+tungsten for
EE

= Brass plates for FH

= Cooling pipes, LV, HV, and
readout are all integrated
onto calorimeter which is
then mounted as unit onto
the CMS endcap yoke
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Development for Cassettes and Services

» To achieve a compact design, the
cassettes should efficiently integrate
as much of the services as possible

= CO,-based cooling including “flow-
restrictors” required for system stability

= DC-DC conversion, ideally at the edge
of the cassette

= Electrical/optical data conversion,
behind the calorimeter or at the edge of

the cassette g s 0
= Services can have significant impact on
design
= Cassette and services R&D will
f

continue over the next few years
leading to TDR

It z’ﬁ.@@ so.Dps;' DN 2 5040 n
| [ = = . —
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R & D overview

= Silicon calorimetry has been extensively studied in the
ILC context by the CALICE collaboration and others

» Foruse inthe HL-LHC environment, radiation and
readout challenges must be addressed
= Dedicated radiation studies have demonstrated the sensor
functionality to the necessary fluence

= Performance in a calorimeter
will be tested in a series of
beam tests beginning in the
winter

= Radiation tests for

scintillator technology

are ongoing (low dose rate
is essential for reliable
results



The end
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HGC e/y new ID information, new ID variables

Shower start

Length compatibility

n width

H/E
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o And to mitigate PU use trans. granularity - cells in < 1.5R,, - H/E in tight cone 0.05

*CMSSW software developments are at a very early stage, clustering, link to charged tracks and PU
mitigation potential at layer level is far from being fully exploited in current studies
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Electron and Photon performance

o Electron efficiency recovered with smooth decrease up to 200 PU
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= Bac
can

Backing Calorimeter

<ing Hadron Calorimeter
pe constructed quite

simi

arly to existing HE:

plastic scintillator tiles with
WLS readout

= Exp

ected radiation dose is

reduced by FH calorimeter
absorbing the first g A

= Active materials with better
radiation tolerance will be used

= To limit the duration of LS3

and
desi

simplify mechanics
gn, construct new

electronics heavily based on
Phase 1 upgrade which can
be integrated with overall

calo

rimeter construction
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Boosted Objects: Substructure*

LHC

T— tX, t—=bW—bqq’

» Containment of 68%

= Jetradiusisafewcm
for parton p; above
5oo GeV

*From studies for 100 TeV pp collider

= Compare size to separation
= Sum of radii at 68% containment of b and
‘W’ daughters, over b-W separation:
* Large overlap independent of mass

= But relevant distance scale falls
dramatically with p- (see plot at left)

40
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