Light Dark Matter at Accelerators:

A Brief Survey

Outline

Defining the challenge

□ Four Strategies

□ Where are we now? Where may the field be in 5 years?

As Universe cools below DM mass, density decreases as e^{-m/T}

Dark Matter interacts with SM to stay in equilibrium...

Eventually dark matter particles can't find each other to annihilate

and a (minimal) DM abundance is left over to the present day

THE THERMAL ORIGIN TARGET (for vector portal)

Two obstacles to Direct Detection

□ Invisibly low energy transfer to nuclei

- Can look for e- recoils (but bkg!)
- Possible mass splitting of DM particles ("inelastic" DM) can make these scattering processes kinematically forbidden for halo dark matter
 - May not affect accelerator signal (splitting △m<MeV), or lead to displaced or prompt e⁺e⁻ pair

Detection Strategies

- □ Missing mass (collider or fixed-target)
- Beam dump (p or e- beam) with DM scattering detection
- □ Missing energy/momentum
- □ LHC missing energy? **NOT** useful here (buried under QCD, low rate)

MISSING MASS: TODAY

SENSITIVITY VS. TARGET Scenario: Scalar DM

SENSITIVITY VS. TARGET

Scenario: Fermion inelastic (pseudo-Dirac) DM

BEAM DUMPS

Good sensitivity (from theorists) for LSND (proton beam + electron scattering)

BEAM DUMPS: TODAY

LSND: 10²³ 800 MeV protons on target; v-e elastic scattering data used to set limit on DM production $(\pi^0 \rightarrow \gamma A' \rightarrow \gamma \chi \chi)$ with subsequent χ -e scattering

Batell et al arXiv:0906.5614 [hep-ph].

E137: 30 C of 20 GeV electrons on target, 8 X₀ shower calorimeter detector; no beam-related events seen \Rightarrow limit on χ -e scattering above 1–3 GeV recoil energy Batell et al arXiv:1406.2698 [hep-ph].

...NEAR FUTURE...

<u>MiniBoone</u>: Dedicated 2013-14 run in "dump mode" sensitive to A' production in π^0 or η^0 decay (~2 10²⁰ pot); using time-of-flight to distinguish from v background

T2K:Ongoing analysis of Super-K data for χ-O NCQE
events using time-of-flight

BEAM DUMPS: TODAY

MISSING ENERGY/MOMENTUM

Use distinctive kinematics of A' (or DM pair) production in e⁻ beam:

A' carries most of the incident beam energy \Rightarrow

MISSING MASS: FUTURE

Belle II

Since BaBar is backgroundlimited, statistics won't help. Any improvement must rely on better γ veto and/or energy resolution

- For discovery, really need resolution — won't improve dramatically
- Low-mass limit proportional to γγ rejection power (10⁻⁷ @ BaBar)
- Rouven & co: could search with converted photons help? (1309.5084)

Positron fixed-target

Proposals using e⁺ beams on target e⁻ (Cornell, VEPP-3)

MISSING MASS: FUTURE

MISSING ENERGY: FUTURE

Current run: 10⁸ electrons on target w/ good bkg rejection

Ultimate few x 10¹¹ electrons?

<1% hadron contamination of beam

MISSING ENERGY: FUTURE

NEXT PROSPECTS

NEXT PROSPECTS

Complementarity

- $\square Missing mass \& missing momentum get better @ small \\ \alpha_D relative to beam dumps$
- □ Inelastic DM can yield prompt or displaced e+e- pair
 - Makes dump search easier
 - Invisibles harder (prompt case) or dedicated but probably tractable search (displaced case)
 - ☐ Always good to have two ways of seeing the same physics