Study of the γ-ray variablility of B2 1215+30

Floriana Zefi
LLR-Ecole Polytechnique
France

Active Galactic Nuclei

What is an AGN?

- AGN \rightarrow Active Galactic Nuclei
- Active Galactic Nuclei (AGN) is a nucleus (of a galaxy) that has higher luminosity than the rest of the galaxy.
- High power: most powerful "non-explosive" sources in the Universe.
- AGN are among the most luminous objects in the sky.
- Very distant sources, that yet can be among the brightest sources in the sky at γ-ray energies.

Main characteristics

- High luminosity: $L_{A G N} \leq 10^{48} \mathrm{erg} / \mathrm{s}$
- Small emitting regions \sim few light day radius $R \leq \frac{c \cdot t_{v a r} \cdot \delta}{1+z}$
- Variable emission
- Broad-band emission: from radio to gamma ray band

NASA, A.Martel: Quasar 3C 273

Urry \& Padovani 1995: Schematic picture of an active galaxy, including its ingredients.

AGN classification

Active Galactic Nuclei

AGN classification

Active Galactic Nuclei

Introduction: B2 1215+30

- B2 1215+30 is a BL Lac object, also known as ON 325 or 1ES 1215+303.
- It was first detected in the 408 MHz survey conducted with the Bologna Northern cross telescope, called B2 1215 (Colla et al. 1970).
- First detected at VHE energies by MAGIC telescope in 2011 (J. Aleksić et al. 2011).
- Uncertain distance due to weak emission lines: $\mathbf{z = 0 . 1 3 0}$ (1.8 Gly) ; z=0.237 (2.6 Gly)
- Location (R.A.:Dec) : (12h17m48.5s:30d06m06s)

Does Fermi detect the flare?
Is the source variable at Fermi energies?

Aim of the work:

Observations of B2 1215+30 across the electromagnetic spectrum with the aim to measure:

- correlation time variability
- spectral characteristics
- intensity-spectrum correlations

Fermi-LAT Analysis

Data selection:

a Coordinates: $(12.297,30.1017)$

- Time range:

1. 1 Jan 2013 - May 2013
2. 1 Jan 2014 - May 2014
a Energy range: $100 \mathrm{MeV}-100 \mathrm{GeV}$

- Region of Interest (ROI) radius: 10°
a Only photons arriving with a rocking angle $>52^{\circ}$ and a zenith angle $>100^{\circ}$ to avoid contamination from the albedo photons from Earth's limb.
a Event class for point source analysis: P7REP_SOURCE_V15

Count map of ROI produced with the $2014^{\text {id }}$ data of
Fermi-LAT.

The background model:

- The background model was constructed the 2FGL including all known gamma-ray sources and diffuse emission inside ROI.
- In the background model were included also sources outside ROI within 5° of the ROI edges.
a Spectral models: Power law, Broken power law, Power law2, Broken Power law2, Log Parabola.

Fermi-LAT Analysis

Likelihood analysis:

- Perform a standard likelihood over the full period of time
- Identify the sources inside ROI: 33 point sources
- Measure the spectra over the full time range
- Get the best fit

2013 observation
TS $(B 21215+30)=742.2 \quad \sigma=25$

2014 observation

TS (B2 1215+30) $=705.3 \quad \sigma=27$

$$
T S=-2 \log \left(\frac{\mathcal{L}_{\text {max }, 0}}{\mathcal{L}_{\text {max }, 1}}\right)
$$

ROI model for the time/energy bins:

- Fix spectral shapes of all background sources
- Fix all parameters for the sources detected with a TS <9
- Run likelihood at each bin

Fermi-LAT Analysis: Spectrum

Time period: 56658-56802 (1Jan - 25 May 2014)
Energy range: $100 \mathrm{MeV}-100 \mathrm{GeV}$
Upper limits : TS<4/bin
Spectral index: 1.85

Lightcurve: 2013 data

Time bin: 3 day

Lightcurve: 2013 data

Time of observation in MJD: 56298-56424 (1Jan - 12 May 2013)
Time bin: 3 day

$$
\begin{aligned}
& F_{\text {avar }}=3.1879 \cdot 10^{-08} \mathrm{ph} / \mathrm{cm}^{2} / \mathrm{s} \\
& \chi(\text { const })=55.8748
\end{aligned}
$$

Chance Probability $\mathrm{P}=0.2267$

Time of observation in MJD: 56658-56802 (1Jan - 25 May 2014)
Time bin: 3 day + 1day time bin around the flare

Lightcurve: 2014 data

2014 Light Curve

Lightcurve: 2014 data

Time of observation in MJD: 56658-56802 (1Jan - 25 May 2014)
Time bin: 3 day + 1day time bin around the flare
χ INDF $=219 / 46$

Lightcurve: 2014 data

Time of observation in MJD: 56658-56802 (1Jan - 25 May 2014)
Time bin: 1day time bin around the flare MJD 56695-56703 (7Feb - 15Feb 2014)

Variability time scale

Variability time scale:
Estimate the variability when the flux increases by a factor of two:
$\Rightarrow t_{v a r}=(0.188 \pm 0.09) d$

Variability time scale

Variability time scale:

$$
\begin{aligned}
& F(t)=F_{c}+F_{0}\left(e^{\frac{t_{0}-t}{T_{r}}}+e^{\frac{t-t_{0}}{T_{d}}}\right)^{-1} \\
& t_{\text {rise }}=(0.184 \pm 0.09) d
\end{aligned}
$$

(equation 6, Abdo et al.2010)

Doppler factor calculation

Use opacity to set a limit for the Doppler factor δ :
$t_{v a r}=4.5 \mathrm{~h}$
$R \leq \frac{c \cdot t_{v a r} \cdot \delta}{1+z}$

$$
\gamma+\gamma \rightarrow e^{+}+e^{-}
$$

$$
R \delta^{-1} \leq c t_{\mathrm{var}} /(1+z) \leq 4.3 \times 10^{14} \mathrm{~cm}
$$

Gamma-rays "escape" the source \rightarrow the optical depth: $\tau_{\gamma \gamma} \ll 1$ Relativistic boost on the emission region.

The optical depth:

$$
\delta \geq\left[\frac{\sigma_{T} d_{L}^{2}}{5 h c^{2}}(1+z)^{2 \alpha} \frac{1}{t_{v a r}} F_{1 k e V}\left(\frac{E_{\gamma}}{G e V}\right)^{\alpha}\right]^{\frac{1}{(4+2 \alpha)}}
$$

(Dondi et al. 1997)
$\left\{\begin{array}{l}\sigma=\text { Thomson cross section } \\ d=\text { luminosity distance } \\ z=\text { redshift } \\ R=\text { size of the emission region } \\ F(E)=\text { flux density }\end{array}\right.$

Doppler factor calculation

Use γ-ray variability to set a limit for the Doppler factor δ :
$\delta \geq\left[\frac{\sigma_{T} d_{L}^{2}}{5 h c^{2}}(1+z)^{2 \alpha} \frac{1}{t_{\text {var }}} F_{1 \text { keV }}\left(\frac{E_{\gamma}}{G e V}\right)^{\alpha}\right]^{\frac{1}{(4+2 \alpha)}}$

X-ray flux ($0.3-10 \mathrm{keV}$) $=1.28 \mathrm{erg} / \mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Spectral index = 2.54
Highest energy photon (Fermi) $=73.6 \mathrm{GeV}$

$$
\delta>5.7
$$

Luminosity distance $=592 \mathrm{Mpc}$
Redshift $=0.13$

Future plans

Paper

Draft version May 17, 2015
Preprint typeset using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ style emulateapj v. 08/13/06

STUDYING THE GAMMA-RAY EMISSION FROM THE BRIGHT, VARIABLE BLAZAR B2 1215+30

VEritas Collaboration ${ }^{1}$, S. Fegan ${ }^{3}$, B. Giebels ${ }^{3}$, D. Horan ${ }^{3}$, J. Kuan ${ }^{4}$, H. Prokoph ${ }^{5}$, and F. Zefi ${ }^{3}$ Draft version May 17, 2015

Abstract

The VERITAS imaging atmospheric Cherenkov telescope array originally reported the detection of TeV gamma-ray emission from the BL Lac object B2 1215+30 in 2013 based on observations carried out between 2008 and 2012. In 2014 February, a massive flare was detected from the same source during routine monitoring observations of the blazar 1ES 1218+304, located in the same field of view. The flare lasted less than a day, and VERITAS detected TeV gamma-ray emission from the source approximately at the level of 200% of the Crab Nebula flux, a standard measure in gamma-ray astronomy. Such bright gamma-ray emission is detected from only a handful of nearby TeV blazars, such as the three well established, TeV-bright blazars in the northern hemisphere, Mrk 421, Mrk 501, and 1ES $1959+650$. The TeV flare was found to be correlated with a flare detected in the FermiLAT data at energies between 100 MeV to 100 GeV . We report here on the remarkable flare from B2 $1215+30$ at gamma-ray energies. Given that the source is located at a distance of at least 4.5 times that of Mrk 421, its luminosity makes it one of the brightest TeV blazars detected to date. We use the VERITAS and Fermi-LAT data to constrain the size of the emission region, and place a preliminary limit on the Doppler factor of the blazar jet. Subject headings: galaxies: active - galaxies: nuclei - gamma rays: general

Future plans

Paper

Draft version May 17, 2015
Preprint typeset using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ style emulateapj v. 08/13/06

STUDYING THE GAMMA-RAY EMISSION FROM THE BRIGHT, VARIABLE BLAZAR B2 1215+30
VEritas Collaboration ${ }^{1}$, S. Fegan ${ }^{3}$, B. Giebels ${ }^{3}$, D. Horan ${ }^{3}$, J. Kuan ${ }^{4}$, H. Prokoph ${ }^{5}$, and F. Zefi ${ }^{3}$ Draft version May 17, 2015

Abstract

The VERITAS imaging atmospheric Cherenkov telescope array originally reported the detection of TeV gamma-ray emission from the BL Lac object B2 1215+30 in 2013 based on observations carried out between 2008 and 2012. In 2014 February, a massive flare was detected from the same source during routine monitoring observations of the blazar 1ES 1218+304, located in the same field of view. The flare lasted less than a day, and VERITAS detected TeV gamma-ray emission from the source approximately at the level of 200% of the Crab Nebula flux, a standard measure in gamma-ray astronomy. Such bright gamma-ray emission is detected from only a handful of nearby TeV blazars, such as the three well established, TeV-bright blazars in the northern hemisphere, Mrk 421, Mrk 501, and 1ES $1959+650$. The TeV flare was found to be correlated with a flare detected in the FermiLAT data at energies between 100 MeV to 100 GeV . We report here on the remarkable flare from B2 $1215+30$ at gamma-ray energies. Given that the source is located at a distance of at least 4.5 times that of Mrk 421, its luminosity makes it one of the brightest TeV blazars detected to date. We use the VERITAS and Fermi-LAT data to constrain the size of the emission region, and place a preliminary limit on the Doppler factor of the blazar jet. Subject headings: galaxies: active - galaxies: nuclei - gamma rays: general

Thank you for the attention!

