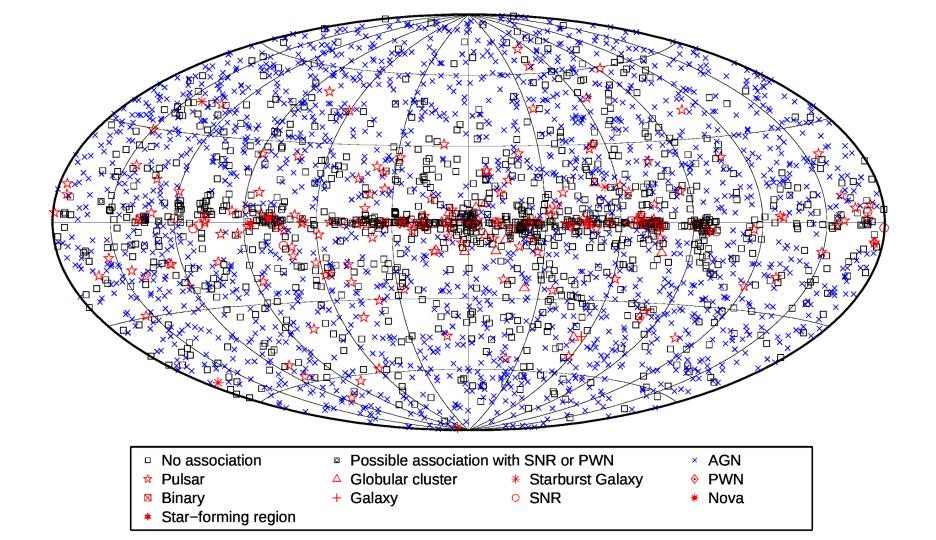
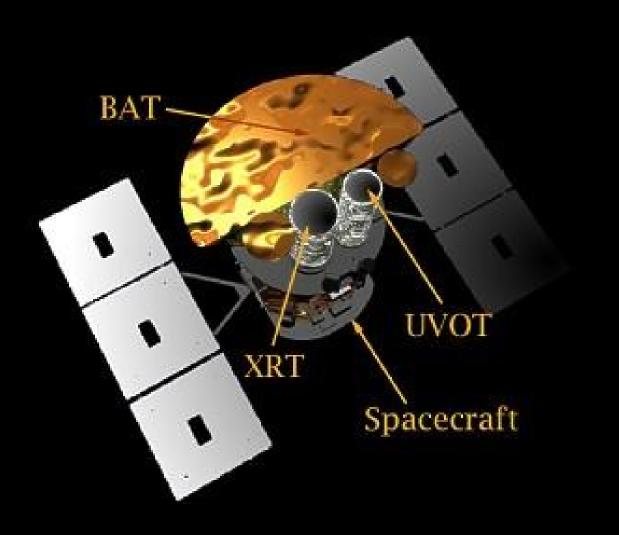
Monitoring Unassociated Fermi Sources with Swift

Mark Wells
May 30, 2015
Fermi Summer School




Table 6. LAT 3FGL Source Classes

Description	Identified		Associated	
-	Designator	Number		
Pulsar, identified by pulsations	PSR	143	•••	•••
Pulsar, no pulsations seen in LAT yet	•••	• • •	psr	2
Pulsar wind nebula	PWN	9	pwn	2
Supernova remnant	SNR	12	snr	11
Supernova remnant / Pulsar wind nebula	•••	• • •	spp	49
Globular cluster	\mathbf{GLC}	0	glc	15
High-mass binary	$\mathbf{H}\mathbf{M}\mathbf{B}$	3	hmb	0
Binary	BIN	1	bin	0
Nova	NOV	1	nov	0
Star-forming region	\mathbf{SFR}	1	\mathbf{sfr}	0
Compact Steep Spectrum Quasar	CSS	0	CSS	1
BL Lac type of blazar	${f BLL}$	18	Ыl	642
FSRQ type of blazar	$\mathbf{F}\mathbf{S}\mathbf{R}\mathbf{Q}$	38	fsrq	446
Non-blazar active galaxy	AGN	0	agn	3
Radio galaxy	RDG	3	rdg	12
Seyfert galaxy	SEY	0	sey	1
Blazar candidate of uncertain type	BCU	5	bcu	568
Normal galaxy (or part)	\mathbf{GAL}	2	gal	1
Starburst galaxy	SBG	0	sbg	4
Narrow line Seyfert 1	NLSY1	2	nlsy1	3
Soft spectrum radio quasar	SSRQ	0	ssrq	3
Total	•••	238	•••	1786
Unassociated	•••	•••	•••	1010

Total	• • •	238	• • •	1786
Unassociated	•••	• • •	• • •	1010

Total	•••	2 38	• • •	1786
Unassociated	• • •	• • •	• • •	1010

The unassociated sources comprise approximately 36% of the 3FGL Catalog.

Swift-XRT Survey of Fermi Unassociated Sources

These results are part of the *Swift* program to follow-up *Fermi* unassociated sources in an attempt to find X-ray counterparts to the unidentified gamma-ray sources. As new observations are performed, these pages will be updated in nearly real time. Please use these results as a guide and proceed with caution when using them in a publication since they are the result of an automated analysis.

When using these data and results in publications, please reference M.C. Stroh & A.D. Falcone 2013, ApJS, 207, 28; arXiv: 1305.4949 for a description of many of the analysis techniques used to reduce these data (note: a more detailed paper describing the complete data set and analysis is forthcoming). Please contact Abe Falcone and Michael Stroh at unassociated@swift.psu.edu if you have any questions about the program or the analysis, or to simply to let us know that you've made use of these data.

1FGL Fields

View 2FGL fields View 3FGL fields

Target	RA (J2000)	Dec (J2000)	Exposure Time (ks)	# of Excesses in XRT FoV
1FGL J0000.8+6600c	0.2092	66.0019	3.6	0
1FGL J0001.9-4158	0.4825	-41.9816	6.0	2
1FGL J0003.1+6227	0.7983	62.4588	9.2	2
1FGL J0009.1+5031	2.2887	50.5201	3.8	2
1FGL J0030.7+0724	7.6775	7.4026	14.1	6

Swift-XRT Survey of Fermi Unassociated Sources

These results are part of the *Swift* program to follow-up *Fermi* unassociated sources in an attempt to find X-ray counterparts to the unidentified gamma-ray sources. As new observations are performed, these pages will be updated in nearly real time. Please use these results as a guide and proceed with caution when using them in a publication since they are the result of an automated analysis.

When using these data and results in publications, please reference M.C. Stroh & A.D. Falcone 2013, ApJS, 207, 28; arXiv: 1305.4949 for a description of many of the analysis techniques used to reduce these data (note: a more detailed paper describing the complete data set and analysis is forthcoming). Please contact Abe Falcone and Michael Stroh at unassociated@swift.psu.edu if you have any questions about the program or the analysis, or to simply to let us know that you've made use of these data.

1FGL Fields

View 2FGL fields View 3FGL fields

Target	RA (J2000)	Dec (J2000)	Exposure (i letus)	# of Excesses in XRT FoV
1FGL J0000.8+6600c	0.2092	66.0019	3.6	0
1FGL J0001.9-4158	0.4 5	- 1.9516	6.0	2
1FGL J0003.1+6227	0.79.3	62.4588	9.2	2
1FGL J0009.1+5031	2.2887	50.5201	3.8	2
1FGL J0030.7+0724	7.6775	7.4026	14.1	6