
Intro to Maximum 
Likelihood 

Liz Hays !
(heavily borrowed from Steve Fegan’s 2013 notes - Thanks, Steve!) 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Measurements in γ-ray astronomy

• Is a source significantly detected?!
- If so, what is its flux?!
- If not, what is upper limit on the flux?!

• What kind of spectrum does it have?!
- What is its spectral index?!

• What is its location in the sky?!

• What are the errors on these values?!

• Is the source variable?
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• Is the source variable?
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Why maximum likelihood?

• ML framework provides a “cookbook” 
through which problems can be solved. 
In other methods ad-hoc choices may have to be made.!

• ML provides unbiased, minimum variance 
estimate as sample size increases. 
Same may not be case for ad-hoc methods.!

• Asymptotically Gaussian: evaluation of 
confidence bounds & hypothesis testing.!

• Well studied in the literature.!

• Starting point for Bayesian analysis.
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Maximum likelihood technique
Given a set of observed data!

• produce a model that accurately 
describes the data, including parameters 
that we wish to estimate,!

• derive the probability (density) for the 
data given the model (PDF),!

• treat this as a function of the model 
parameters (likelihood function), and!

• maximize the likelihood with respect to 
the parameters - ML estimation.
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Maximum likelihood basics
• Data:!

• Model parameters:!

• Likelihood:!

• Conditional probability rule for independent 
events:!

• For independent data: 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ML estimation (MLE)
• Parameters can be estimated by maximizing 

likelihood. Easier to work with log-likelihood: 
 

• Estimates of        from solving simultaneous 
equations: 

• For one parameter, if we have: 
then: 
 
so 2nd derivative is related to “errors”
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χ2 fit of constant

• Data: independent measurements of 
flux of some source with errors - !

• Model: all measurements are of a 
constant flux    with Gaussian errors.!

• Probabilities: !

• Log likelihood: 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MLE example 1:



χ2 fit of constant

• Log likelihood: 
 

• Maximize for MLE of    : 
 

• Curvature gives “error” on F: 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Constant with respect to F 

MLE example 1:



Event counting experiment
• Experiment detects n events (e.g. γ rays)!

• Model: Poisson process with mean of of λ:!
!

• Log likelihood:!

• ML estimate and error in Gaussian regime: 
 
 
 
 

10

Gaussian  
approximation

Constant WRT λ

Data cpt Npred

MLE example 2:



Log-likelihood profiles
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• Gaussian approximation 
is reasonable when n is 
“large enough”. In this 
case              is a good 
estimate of the “error”.!

• If not, estimate errors by 
finding points where  
                decreases by  
1.0 from maximum, i.e.,!

!

• n=100 :!

• n=2 : 

MLE example 2:



Log-likelihood profiles
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• Gaussian approximation 
is reasonable when n is 
“large enough”. In this 
case              is a good 
estimate of the “error”.!

• If not, estimate errors by 
finding points where  
                decreases by  
1.0 from maximum, i.e.,!

!

• n=100 :!

• n=2 : 

# errors_poisson.py - 2013-05-07 SJF 
# Evaluate the errors on the Poisson mean 
import math, scipy.optimize 
n_meas   = 2 
logL     = lambda lam: n_meas*math.log(lam)-lam 
opt_fn   = lambda lam: -logL(lam) 
opt_res  = scipy.optimize.minimize(opt_fn, 1e-8) 
lam_est  = opt_res.x[0] 
logL_max = logL(lam_est) 
root_fn  = lambda lam: 2.0*(logL(lam)-logL_max)+1.0 
lam_lo   = scipy.optimize.brentq(root_fn, 1e-8, lam_est) 
lam_hi   = scipy.optimize.brentq(root_fn, lam_est, 1e8) 
print lam_est, lam_lo-lam_est, lam_hi-lam_est

MLE example 2:



Hypothesis testing
• Compare likelihoods of two hypotheses to 

see which is better supported by the data.!

• Likelihood-ratio test (LRT) & Wilks’ theorem.!

• Given a model with N+M parameters:  
 
where N have true values: !

• Values of likelihood under two hypotheses: 
                    

• “Ratio” distributed as: 
13Terms and conditions apply



Why is that useful?
• We make an assumption about  

the model (the null hypothesis), 
in which the parameters have  
some presumed “true” values.!

• Compute      from these values 
and     using MLE for all params.!

• Hope to show that 
is so large that it is improbable from         ,   !

• and, hence, reject the null hypothesis. 
Usually cannot say hypothesis is true!
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(We don’t know the true values of any parameters!)

http://xkcd.com/892/



Source & Background
• Data: events detected in two independent 

“channels”, !

• Model: Poisson process with!
- Unknown “source” and “background”!

!

- Response matrix  
(presumed known)!

- Poisson means 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MLE example 3:



MLE
• Log likelihood: 

!

• MLE: 
 
 
 

• If likelihood: 
“errors” are: 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MLE example 3:

Data component

Npred

Covariance matrix Fisher information matrix

Gaussian  
approximation



Covariances and errors
• Calculate Fisher information matrix and invert: 
 

• For our example we get: 
 
 
 

• In general parameters are correlated, but can 
choose set that is uncorrelated. Here they are  
           giving
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MLE example 3:



Source significance

• Null hypothesis: suppose           , then: 
 

• MLE for B gives: 
 
 

• Test statistic: 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MLE example 3:



On/Off problems

• General set of problems where  
 
 
 

• and where these are assumed to be known: 
! - ratio of source to background observation 
! - observation time (or other detector 
!   factors) 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MLE for On/Off problems
• Then: 
 
 

• MLE & (co)variances of S and B are: 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This is what you 
would expect!



TS for On/Off problems
• Test statistic for source detection in On/Off 

problems is: 
 

• Significance is:!

• This is the famous “Li & Ma” formula from: 
ApJ 272, 317 (1983) - 493 citations on ADS!

• Probably, you wouldn’t arrive at this formula 
using ad hoc estimation methods!

• P-values: scipy.stats.chi2.sf(TS,1)
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Example: Crab Pulsar

22

 !
non = 2000	


noff =  400	


    a = 0.6/0.35 = 1.71	


    T = 0.6 x 248 days = 148.8 days	



	

 	

 (approximate numbers)

figure from Abdo et al. (LAT Collaboration) !
2010, ApJ, 708, 1254 

        S = 8.8 day-1	



sigmas = 0.4 day-1	



         TS = 476.7	


    √TS = 21.8

onoff

sigma Est = S/sigma s = 22 



Example Code
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Acciari, et al., ApJ, 709, 163 (2010)

Ratio of value to error - used as “significance” before Li&Ma  

# lima.py - 2013-05-15 SJF 
# Example of Li & Ma significance calculation 
import math, scipy.stats 
!
def ts_lima(non,noff,alpha): 
    opa  = 1.0+alpha 
    ntot = non+noff 
    return 2.0*(non*math.log(opa*non/alpha/ntot) \ 
                + noff*math.log(opa*noff/ntot)) 
!
non    = 2808 
noff   = 4959 
alpha  = 1.0/3 
T      = 27.2 
!
S_hat  = (non - noff*alpha)/T 
sig2_S = (non + noff*alpha**2)/T**2 
ts     = ts_lima(non,noff,alpha) 
signif = math.sqrt(ts) 
Pval   = scipy.stats.chi2.sf(ts,1) 
!
print S, math.sqrt(sig2_S), ts, signif, Pval



Confidence regions
• Saw earlier that we can calculate “asymmetric 

errors” by finding points where 2lnL decreases 
by 1.0: 2-sided 1σ confidence interval (68%)!

• Actually this comes from LRT (Wilks’ theorem). 
This is region where null hypothesis that 
parameter value has some value cannot be 
rejected at given confidence level.!

• But what to do if likelihood depends on more 
than our parameter of interest?!

• It depends...
24

In problems with multiple parameters.



Profile likelihood

• Often we are either concerned only with the 
one parameter, or wish to treat the multiple 
parameters separately (ignore covariance).!

• Produce “profile log-likelihood” curve, a 
function of only one parameter (at a time), 
maximized over all others.!

• LRT says this should behave as χ2(1).!

• Define confidence region using this function 
exactly as before.

25

Confidence regions with nuisance parameters  
Rolke, et al., NIM A, 551, 493 (2005)



• Use simple On/Off 
counting example!

 
 
 
 

• Giving: 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Example of profile likelihood

This is not a significant result, so we 
would usually not claim a detection. 

Provide an upper limit instead.



• Our 1ES1218 example 
isn’t very enlightening 
here, so take: 
 
 
 
 

• Giving: 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Example of profile likelihood

This is not a significant result, so we 
would usually not claim a detection. 

Provide an upper limit instead.

# conf_lima_1d.py - 2013-05-25 SJF 
# 1-D 2-sided confidence interval in Li & Ma problem 
from math import * 
import scipy.stats, scipy.optimize, sys 
# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2) 
non, noff, alpha, T = (15, 24, 1.0/3, 10.0) 
C = 0.68; # Use 1-sigma confidence region 
d2logL = scipy.stats.chi2.ppf(C,1) 
def logL(S,B): 
    return non*log(max((S+alpha*B)*T,sys.float_info.min)) + \ 
    noff*log(max(B*T,sys.float_info.min))-(S+(1+alpha)*B)*T 
def profileLogL(S): 
    opt_fn = lambda B: -logL(S,B) 
    opt_res = scipy.optimize.minimize(opt_fn, 1) 
    return -opt_res.fun 
S_hat    = (non-noff*alpha)/T 
B_hat    = noff/T 
logL_max = logL(S_hat,B_hat) 
sig_S    = sqrt(non+noff*alpha**2)/T 
TS       = -2.0*(profileLogL(0)-logL_max) 
root_fn  = lambda S: 2.0*(profileLogL(S)-logL_max)+d2logL 
S_lo     = scipy.optimize.brentq(root_fn, 1e-8, S_hat) 
S_hi     = scipy.optimize.brentq(root_fn, S_hat, 1e8) 
print S_hat, S_lo-S_hat, S_hi-S_hat, sig_S, TS, sqrt(TS)



Frequentist upper limits

• In two-sided interval search for two points S1,2 
where                           with !

• For one-sided interval (with C>0.5) we need 
to find single such point with             and for 
which                              (or                         )!

• E.g. for C=0.95 we search
28

One-sided confidence region using profile likelihood  
Rolke, et al., NIM A, 551, 493 (2005)

95% 95%

Two-sided interval One-sided interval



• Frequentist upper limit at 
95% confidence level: 

• Use simple on/off 
counting example 
 
 
 
 

• Giving: 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Exercise: adapt 2-sided interval 
code to calculate this



Good practices
• It is always best to define all the parameters of 

an analysis before looking at the data.!
- Data selection “cuts”!
- Thresholds for claiming detection.!

• It is tempting to adjust the analysis procedure 
to enhance some small signal, BUT THIS IS 
FRAUGHT WITH DANGER!!

• Best practice is to do a blind analysis. Use MC 
or side-band data to refine analysis in advance.!

• But this is not always possible...
30



Trials factors

• Often you simply don’t know enough in 
advance to fully determine the analysis, e.g.!
- the mass of the DM particle (or Higgs)!
- the locations of sources in the sky etc...!

• So, you must look through the data and 
search for a significant excess signal ...!

• ... and unfortunately you must pay a statistical 
penalty for doing so.

31

Or the “look-elsewhere effect” 



• If after making     independent tests of for a 
significant event (e.g     energy channels)!

• the most significant test had a P-value of:!

• then to account for the number of “trials” you 
must scale the P-value as:!

• For example, a 4σ event has a P-value of 
                       . With 1000 trials, the post-trial 
P-value of  
which is equivalent to a 1.9σ event. 

32

Trials factors
Or the “look-elsewhere effect” 



Review

• ML provides “cookbook” for estimation and 
hypothesis testing:!
- estimate parameters: maximum of likelihood!
- errors: curvature of log-likelihood surface!

- TS and significance: is improvement in log-L 
over null hypothesis consistent with χ2?!

• MLE is only as good as the model!

33



Onwards to LAT analysis...
• LAT ML analysis is fundamentally the same a 

what we have seen here (but more complex).!

• Channels organized by sky position and energy 
(i.e. 3-dimensions). Million channels typical.!

• Model is Poisson for each channel with mean  
determined by:!
- spatial-spectral model provided by user!
- observational response (calculated by 

software from IRFs provided by LAT team)!

• MLE by software: errors, covariances, TS, etc
34



Eg: 1ES1218+304 w/VERITAS

35

Acciari, et al., ApJ, 709, 163 (2010)

Ratio of value to error - used as “significance” before Li&Ma  



Bayesian statistics
• Likelihood function has no meaning itself, 

e.g., it is not a probability. Its usefulness 
comes from theorems such as the LRT.!

• MLE belongs to the class of “frequentist” 
statistical methods: talk about the results of 
repeated hypothetical experiments.!

• Saw how to produce confidence intervals: 
true parameter value would lie inside the 
interval in a certain % of hypothetical expts.!

• Somewhat awkward language ???
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Bayesian statistics

• In Bayesian statistics we talk about the 
“probability” that the parameters have 
certain values.!

• Bayes’ theorem: 
 
 
relates probability after experiment has been 
done to probability before.!

• Can think of this as refining our belief about 
the model through experimental results.

37

Prior probability density
Likelihood

Posterior!
probability!

density



Bayesian upper limits

• ... they are regions that contain a certain 
fraction of the posterior probability.!

• Integrate over parameter from lower bound to 
find point where integral reaches C% of total.!

• In case of multiple parameters, use the profile 
likelihood. Not strictly a Bayesian approach. 38

Or more correctly “Quasi-Bayesian” or “Bayesian-like” 

Unphysical region  
Prior is zero

Physical region!
Prior = 1.0 • Bayesian confidence 

regions correspond 
to what you would 
expect...

Upper limit



Why have two methods?

• Unphysical frequentist upper limits occur can 
occur if the peak of the likelihood is in an 
unphysical region of the parameter space.!

• More complex (or ad hoc) approaches fix this.!

• But Bayesian upper limits are not affected.
39

The problem of unphysical upper limits 



Example of unphysical MLE
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Example of unphysical MLE
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# ul_lima_bayes_1d.py - 2013-05-25 SJF 
# Bayesian upper limit in Li & Ma problem 
from math import * 
import scipy.stats, scipy.optimize, scipy.integrate, sys 
# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2) 
# non, noff, alpha, T = (15, 24, 1.0/3, 10.0) 
non, noff, alpha, T = (4, 36, 1.0/3, 10.0) 
C = 0.95; # Use 95% confidence region 
def logL(S,B): 
    return non*log(max((S+alpha*B)*T,sys.float_info.min)) + \ 
    noff*log(max(B*T,sys.float_info.min))-(S+(1+alpha)*B)*T 
def profileLogL(S): 
    opt_fn = lambda B: -logL(S,B) 
    opt_res = scipy.optimize.minimize(opt_fn, 1) 
    return -opt_res.fun 
S_hat    = (non-noff*alpha)/T 
sig_S    = sqrt(non+noff*alpha**2)/T 
logL_max = profileLogL(S_hat) 
def logPrior(S): 
    return log(1); 
def logPosterior(S): 
    return logPrior(S)+profileLogL(S)-logL_max 
def integralPosterior(Smax): 
    integrand = lambda S: exp(logPosterior(S)) 
    y, err = scipy.integrate.quad(integrand,0,Smax) 
    return y 
total_integral = integralPosterior(S_hat+100*sig_S); 
root_fn  = lambda S: integralPosterior(S) - total_integral*C 
S_ul = scipy.optimize.brentq(root_fn, 0, S_hat+100*sig_S) 
print S_ul, integralPosterior(S_ul)/total_integral, total_integral



• Frequentist upper limit at 
95% confidence level: 

• Our 1ES1218 example 
isn’t very enlightening 
here, so take: 
 
 
 
 

• Giving: 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• Bayesian 95% upper limit: 


