Intro to Maximum Likelihood

Liz Hays

(heavily borrowed from Steve Fegan's 2013 notes - Thanks, Steve!)

Measurements in γ-ray astronomy

- Is a source significantly detected?
 - If so, what is its flux?
 - If not, what is upper limit on the flux?
- What kind of spectrum does it have?
 - What is its spectral index?
- What is its location in the sky?
- What are the errors on these values?
- Is the source variable?

Measurements in γ-ray astronomy

Hypothesis testing

Parameter estimation

Hypothesis estestingn

Hypothesis testing

Parameter estimation

Parameter estimation

Hypothesis estestingn

Hypothesis testing

- Is a source significantly detected?
 - If so, what is its flux?
 - If not, what upper limit on the flux?
- What kind of spectrum does it have?
 - What is its spectral index?
- What is its location in the sky?
- What are the errors on these values?
- Is the source variable?

Why maximum likelihood?

- ML framework provides a "cookbook" through which problems can be solved.
 In other methods ad-hoc choices may have to be made.
- ML provides unbiased, minimum variance estimate as sample size increases.
 Same may not be case for ad-hoc methods.
- Asymptotically Gaussian: evaluation of confidence bounds & hypothesis testing.
- Well studied in the literature.
- Starting point for Bayesian analysis.

Maximum likelihood technique

Given a set of observed data

- produce a model that accurately describes the data, including parameters that we wish to estimate,
- derive the probability (density) for the data given the model (PDF),
- treat this as a function of the model parameters (likelihood function), and
- maximize the likelihood with respect to the parameters - ML estimation.

Maximum likelihood basics

- Data: $X = \{x_i\} = \{x_1, x_2, ..., x_N\}$
- Model parameters: $\Theta = \{\theta_j\} = \{\theta_1, \theta_2, ..., \theta_M\}$
- Likelihood: $\mathcal{L}(\Theta|X) = P(X|\Theta)$
- Conditional probability rule for independent events: P(A,B) = P(A)P(B|A) = P(A)P(B)
- For independent data:

$$P(X|\Theta) = P(\{x_i\}|\Theta) = P(x_1|\Theta)P(x_2, ..., x_N|\Theta) = \cdots$$
$$= P(x_1|\Theta)P(x_2|\Theta)\cdots P(x_N|\Theta) = \prod_i P(x_i|\Theta)$$
$$\mathcal{L}(\Theta|X) = \prod_i P(x_i|\Theta)$$

ML estimation (MLE)

 Parameters can be estimated by maximizing likelihood. Easier to work with log-likelihood:

$$\ln \mathcal{L}(\Theta) = \ln \mathcal{L}(\Theta|X) = \sum_{i} \ln P(x_i|\Theta)$$

• Estimates of $\{\hat{\theta}_k\}$ from solving simultaneous equations:

$$\left. \frac{\partial \ln \mathcal{L}}{\partial \theta_j} \right|_{\{\hat{\theta}_k\}} = 0$$

• For one parameter, if we have: $\mathcal{L}(\theta) \sim e^{-\frac{\tau}{2\sigma_{\theta}^2}}$

then:
$$\left. \frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2} \right|_{\hat{\theta}} = -\frac{1}{\sigma_{\theta}^2}$$

Gaussian approximation

so 2nd derivative is related to "errors"

χ² fit of constant

- Data: independent measurements of flux of some source with errors - (x_i, σ_i)
- Model: all measurements are of a constant flux $_F$ with Gaussian errors.
- Probabilities: $P(x_i|F) = \frac{1}{\sqrt{2\pi}\sigma_i}e^{-\frac{(x_i-F)^2}{2\sigma_i^2}}$
- Log likelihood:

$$\ln \mathcal{L}(F) = -\sum \frac{(x_i - F)^2}{2\sigma_i^2} - \sum \ln \sigma_i - \frac{N}{2} \ln 2\pi$$

χ² fit of constant

Log likelihood:

$$\ln \mathcal{L}(F) = -\sum \frac{(x_i - F)^2}{2\sigma_i^2} \left[-\sum \ln \sigma_i - \frac{N}{2} \ln 2\pi \right]$$

Constant with respect to F

Maximize for MLE of F:

$$\frac{\partial \ln \mathcal{L}}{\partial F} = \sum \frac{x_i - F}{\sigma_i^2} = 0 \implies \hat{F} = \frac{\sum x_i / \sigma_i^2}{\sum 1 / \sigma_i^2}$$

• Curvature gives "error" on *F*:

$$\frac{1}{\sigma_F^2} = -\left. \frac{\partial^2 \ln \mathcal{L}}{\partial F^2} \right|_{\hat{F}} = \sum \frac{1}{\sigma_i^2} \implies \sigma_F = \frac{1}{\sqrt{\sum 1/\sigma_i^2}}$$

Event counting experiment

- Experiment detects n events (e.g. γ rays)
- Model: Poisson process with mean of of λ :

$$P(x|\theta) o P(n|\lambda) = rac{\lambda^n e^{-\lambda}}{n!}$$
 Constant WRT

- Log likelihood: $\ln \mathcal{L}(\lambda) = n \ln \lambda \lambda$ Data cpt Npred
- ML estimate and error in Gaussian regime:

$$\frac{\partial \ln \mathcal{L}}{\partial \lambda} = \frac{n}{\lambda} - 1 \implies \hat{\lambda} = n$$

$$\frac{1}{\sigma_{\lambda}^2} = -\left. \frac{\partial^2 \ln \mathcal{L}}{\partial \lambda^2} \right|_{\hat{\lambda}} = \frac{n}{\hat{\lambda}^2} \implies \sigma_{\lambda}^2 = n$$

Gaussian approximation

MLE example 2:

Log-likelihood profiles

- Gaussian approximation is reasonable when n is "large enough". In this case $\sigma_{\lambda}^2 = n$ is a good estimate of the "error".
- If not, estimate errors by finding points where $2 \ln \mathcal{L}(\lambda)$ decreases by 1.0 from maximum, i.e.,

$$2\ln \mathcal{L}(\lambda) = 2\ln \mathcal{L}(\hat{\lambda}) - 1$$

•
$$n=100$$
: $\hat{\lambda} = 100.0^{+10.33}_{-9.67}$

•
$$n=2$$
: $\hat{\lambda} = 2.0^{+1.77}_{-1.10}$

MLE example 2:

Lag-likalihaad profilas

```
# errors_poisson.py - 2013-05-07 SJF
# Evaluate the errors on the Poisson mean
import math, scipy.optimize
n_meas = 2
logL = lambda lam: n_meas*math.log(lam)-lam
opt_fn = lambda lam: -logL(lam)
opt_res = scipy.optimize.minimize(opt_fn, 1e-8)
lam_est = opt_res.x[0]
logL_max = logL(lam_est)
root_fn = lambda lam: 2.0*(logL(lam)-logL_max)+1.0
lam_lo = scipy.optimize.brentq(root_fn, 1e-8, lam_est)
lam_hi = scipy.optimize.brentq(root_fn, lam_est, 1e8)
print lam_est, lam_lo-lam_est, lam_hi-lam_est
```


 $2 \ln \mathcal{L}(\lambda)$ decreases by 1.0 from maximum, i.e.,

$$2\ln \mathcal{L}(\lambda) = 2\ln \mathcal{L}(\hat{\lambda}) - 1$$

•
$$n=100$$
: $\hat{\lambda} = 100.0^{+10.33}_{-9.67}$

•
$$n=2$$
: $\hat{\lambda} = 2.0^{+1.77}_{-1.10}$

Hypothesis testing

- Compare likelihoods of two hypotheses to see which is better supported by the data.
- Likelihood-ratio test (LRT) & Wilks' theorem.
- Given a model with N+M parameters:

$$\Theta = \{\theta_1, \dots, \theta_N, \theta_{N+1}, \dots, \theta_{N+M}\}\$$

where *N* have true values: $\theta_1^T, \dots, \theta_N^T$

Values of likelihood under two hypotheses:

$$\mathcal{L}_1 = \mathcal{L}(\hat{ heta}_1, \dots, \hat{ heta}_N, \hat{ heta}_{N+1}, \dots, \hat{ heta}_{N+M})$$
 $\mathcal{L}_0 = \mathcal{L}(\theta_1^T, \dots, \theta_N^T, \hat{ heta}_{N+1}, \dots, \hat{ heta}_{N+M})$

• "Ratio" distributed as: $2(\ln \mathcal{L}_1 - \ln \mathcal{L}_0) \sim \chi^2(N)$

Why is that useful?

(We don't know the true values of any parameters!)

- We make an assumption about the model (the null hypothesis), in which the parameters have some presumed "true" values.
- Compute \mathcal{L}_0 from these values and \mathcal{L}_1 using MLE for all params.
- Hope to show that $2(\ln \mathcal{L}_1 \ln \mathcal{L}_0)$ is so large that it is improbable from $\chi^2(N)$,
- and, hence, reject the null hypothesis. Usually cannot say hypothesis is true!

http://xkcd.com/892/

Source & Background

- Data: events detected in two independent "channels", $X = \{n_1, n_2\}$
- Model: Poisson process with
 - Unknown "source" and "background"

$$\Theta = \{\theta_1, \theta_2\} = \{S, B\}$$
 $\vec{\Theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} S \\ B \end{pmatrix}$

- Response matrix (presumed known) $\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$

$$\mathbf{R}=\left(egin{array}{cc} r_{11} & r_{12} \ r_{21} & r_{22} \end{array}
ight)$$

- Poisson means $\begin{pmatrix} \lambda_1 \\ \vec{\lambda} = \mathbf{R}\vec{\Theta} \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \begin{pmatrix} S \\ B \end{pmatrix}$

MLE

Log likelihood:

$$\ln \mathcal{L}(S,B) = n_1 \ln(r_{11}S + r_{12}B) + n_2 \ln(r_{21}S + r_{22}B) - (r_{11} + r_{21})S - (r_{12} + r_{22})B + const$$

• MLE:
$$\frac{\partial \ln \mathcal{L}}{\partial S} = \frac{\partial \ln \mathcal{L}}{\partial B} = 0 \implies \hat{\vec{\Theta}} = \mathbf{R}^{-1}\vec{n}$$

$$\begin{pmatrix} \hat{S} \\ \hat{B} \end{pmatrix} = \frac{1}{r_{11}r_{22} - r_{12}r_{21}} \begin{pmatrix} r_{22} & -r_{12} \\ -r_{21} & r_{11} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$$

$$\ln \mathcal{L}_1 = \ln \mathcal{L}(\hat{S}, \hat{B}) = n_1 \ln n_1 + n_2 \ln n_2 - (n_1 + n_2)$$

• If likelihood: $\mathcal{L}(\vec{\Theta}) \sim e^{-\frac{1}{2}(\vec{\Theta} - \hat{\vec{\Theta}})^T \Sigma^{-1}(\vec{\Theta} - \hat{\vec{\Theta}})}$ Gaussian

Gaussian approximation

"errors" are:
$$\frac{\partial^2 \ln \mathcal{L}}{\partial \theta_i \partial \theta_j} \Big|_{\hat{\vec{\Theta}}} = -(\Sigma^{-1})_{ij} = -\mathcal{I}_{ij}$$

Fisher information matrix

Covariances and errors

Calculate Fisher information matrix and invert:

$$\mathcal{I}_{ij} = -\left. \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_i \partial \theta_j} \right|_{\hat{\vec{\Theta}}} \to \mathbf{\Sigma} = \left(\begin{array}{cc} \sigma_S^2 & \text{cov}(S, B) \\ \text{cov}(S, B) & \sigma_B^2 \end{array} \right) = \mathcal{I}^{-1}$$

For our example we get:

$$\mathcal{I} = \frac{1}{n_1 n_2} \left(\begin{array}{cc} r_{21}^2 n_1 + r_{11}^2 n_2 & r_{21} r_{22} n_1 + r_{11} r_{12} n_2 \\ r_{21} r_{22} n_1 + r_{11} r_{12} n_2 & r_{22}^2 n_1 + r_{12}^2 n_2 \end{array} \right)$$

$$\mathbf{\Sigma} = rac{1}{\det(\mathbf{R})^2} \left(egin{array}{cc} r_{22}^2 n_1 + r_{12}^2 n_2 & -r_{21} r_{22} n_1 - r_{11} r_{12} n_2 \ -r_{21} r_{22} n_1 - r_{11} r_{12} n_2 & r_{21}^2 n_1 + r_{11}^2 n_2 \end{array}
ight)$$

• In general parameters are correlated, but can choose set that is uncorrelated. Here they are $\{\lambda_1, \lambda_2\}$ giving $\hat{\lambda}_1 = n_1, \hat{\lambda}_2 = n_2, \Sigma_{\lambda} = \operatorname{diag}(n_1, n_2)$

Source significance

• Null hypothesis: suppose S = 0, then:

$$\ln \mathcal{L}_0(B) = \ln \mathcal{L}(S = 0, B)$$

$$= n_1 \ln r_{12}B + n_2 \ln r_{22}B - (r_{12} + r_{22})B$$

- MLE for B gives: $\frac{\partial \ln \mathcal{L}_0}{\partial B} = 0 \implies \hat{B}_0 = \frac{n_1 + n_2}{r_{12} + r_{22}}$ $= n_1 \ln \frac{r_{12}(n_1 + n_2)}{r_{12} + r_{22}} + n_2 \ln \frac{r_{22}(n_1 + n_2)}{r_{12} + r_{22}} (n_1 + n_2)$
- Test statistic: $TS = 2(\ln \mathcal{L}_1 \ln \mathcal{L}_0) \sim \chi^2(1)$

$$TS = 2 \left[n_1 \ln \frac{(r_{12} + r_{22})n_1}{r_{12}(n_1 + n_2)} + n_2 \ln \frac{(r_{12} + r_{22})n_2}{r_{22}(n_1 + n_2)} \right]$$

On/Off problems

General set of problems where

$$n_2 \to n_{off}$$

 $n_1 \to n_{on}$
 $\lambda_2 \to \lambda_{off} = BT$
 $\lambda_1 \to \lambda_{on} = (S + \alpha B)T$

- and where these are assumed to be known:
 - α ratio of source to background observation
 - T observation time (or other detector factors)

MLE for On/Off problems

• Then:
$$\mathbf{R} = T \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$$
 $\mathbf{R}^{-1} = \frac{1}{T} \begin{pmatrix} 1 & -\alpha \\ 0 & 1 \end{pmatrix}$

$$\ln \mathcal{L}(S, B) = n_{on} \ln[(S + \alpha B)T] + n_{off} \ln BT$$
$$- (S + (1 + \alpha)B)T$$

MLE & (co)variances of S and B are:

$$\hat{B} = \frac{1}{T} n_{off}$$

$$\sigma_B^2 = \frac{1}{T} n_{off}$$
 $\sigma_B^2 = \frac{1}{T^2} n_{off}$

$$\hat{S} = \frac{1}{T}(n_{on} - \alpha n_{off})$$

$$\hat{S} = \frac{1}{T}(n_{on} - \alpha n_{off})$$
 $\sigma_S^2 = \frac{1}{T^2}(n_{on} + \alpha^2 n_{off})$

This is what you would expect!

$$cov(\hat{S}, \hat{B}) = -\frac{1}{T^2} \alpha n_{off}$$

TS for On/Off problems

 Test statistic for source detection in On/Off problems is:

$$TS = 2 \left[n_{on} \ln \frac{(1+\alpha)n_{on}}{\alpha(n_{on} + n_{off})} + n_{off} \ln \frac{(1+\alpha)n_{off}}{(n_{on} + n_{off})} \right]$$

- Significance is: $\sigma = \sqrt{TS}$
- This is the famous "Li & Ma" formula from:
 ApJ 272, 317 (1983) 493 citations on ADS
- Probably, you wouldn't arrive at this formula using ad hoc estimation methods
- P-values: scipy.stats.chi2.sf(TS,1)

Example: Crab Pulsar

figure from Abdo et al. (LAT Collaboration) 2010, ApJ, 708, 1254

$$n_{on} = 2000$$

 $n_{off} = 400$
 $a = 0.6/0.35 = 1.71$
 $T = 0.6 \times 248 \text{ days} = 148.8 \text{ days}$
(approximate numbers)

$$S = 8.8 \text{ day}^{-1}$$

 $sigma_s = 0.4 \text{ day}^{-1}$
 $TS = 476.7$
 $\sqrt{TS} = 21.8$

$$sigma Est = S/sigma s = 22$$

Example Code

```
# lima.py - 2013-05-15 SJF
# Example of Li & Ma significance calculation
import math, scipy.stats
def ts lima(non, noff, alpha):
    opa = 1.0 + alpha
    ntot = non + noff
    return 2.0*(non*math.log(opa*non/alpha/ntot) \
                + noff*math.log(opa*noff/ntot))
   = 2808
non
noff = 4959
alpha = 1.0/3
      = 27.2
S hat = (non - noff*alpha)/T
sig2 S = (non + noff*alpha**2)/T**2
ts
   = ts lima(non, noff, alpha)
signif = math.sqrt(ts)
Pval = scipy.stats.chi2.sf(ts,1)
print S, math.sqrt(sig2 S), ts, signif, Pval
```

Confidence regions

In problems with multiple parameters.

- Saw earlier that we can calculate "asymmetric errors" by finding points where 2ln L decreases by 1.0: 2-sided 1σ confidence interval (68%)
- Actually this comes from LRT (Wilks' theorem).
 This is region where null hypothesis that parameter value has some value cannot be rejected at given confidence level.
- But what to do if likelihood depends on more than our parameter of interest?
- It depends...

Profile likelihood

Confidence regions with nuisance parameters

Rolke, et al., NIM A, 551, 493 (2005)

- Often we are either concerned only with the one parameter, or wish to treat the multiple parameters separately (ignore covariance).
- Produce "profile log-likelihood" curve, a function of only one parameter (at a time), maximized over all others.
- LRT says this should behave as $\chi^2(1)$.
- Define confidence region using this function exactly as before.

Example of profile likelihood

$$\hat{S} = 0.7^{+0.45}_{-0.39} \,\mathrm{hr}^{-1}$$

Use simple On/Off counting example

$$n_{off} = 24$$
 $n_{on} = 15$
 $\alpha = 1/3$
 $T = 10.0 \, \mathrm{hr}$

Giving:

This is not a significant result, so we would usually not claim a detection. Provide an upper limit instead.

$$\hat{S} = 0.7 \,\text{hr}^{-1}$$

$$\sigma_S = 0.42 \,\text{hr}^{-1}$$

$$TS = 3.43$$

$$\sigma = 1.85$$

Example of profile likelihood

```
# conf lima 1d.py - 2013-05-25 SJF
 # 1-D 2-sided confidence interval in Li & Ma problem
 from math import *
 import scipy.stats, scipy.optimize, sys
 \# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
\frac{2}{3} non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
3 C = 0.68; # Use 1-sigma confidence region
 d2logL = scipy.stats.chi2.ppf(C,1)
 def logL(S,B):
     return non*log(max((S+alpha*B)*T, sys.float info.min)) + \
     noff*log(max(B*T, sys.float info.min)) - (S+(1+alpha)*B)*T
 def profileLogL(S):
     opt fn = lambda B: -logL(S,B)
     opt res = scipy.optimize.minimize(opt fn, 1)
     return -opt res.fun
 S hat = (non-noff*alpha)/T
 B hat = noff/T
 logL max = logL(S hat,B hat)
 sig S = sqrt(non+noff*alpha**2)/T
     = -2.0*(profileLogL(0)-logL max)
 TS
 root fn = lambda S: 2.0*(profileLogL(S)-logL max)+d2logL
 S lo = scipy.optimize.brentq(root fn, 1e-8, S hat)
 S hi = scipy.optimize.brentq(root fn, S hat, 1e8)
 print S hat, S lo-S hat, S hi-S hat, sig S, TS, sqrt(TS)
```

Frequentist upper limits

One-sided confidence region using profile likelihood Rolke, et al., NIM A, 551, 493 (2005)

- In two-sided interval search for two points $S_{1,2}$ where $-2\Delta \ln \mathcal{L}(S_{1,2}) = x$ with $\chi^2(x,1) = C$
- For one-sided interval (with C>0.5) we need to find single such point with $S_{UL} > \hat{S}$ and for which $0.5 + \chi^2(x, 1)/2 = C$ (or $\chi^2(x, 1) = 2C 1$)
- E.g. for C=0.95 we search $-2\Delta \ln \mathcal{L}(S_{UL})=2.71$

Example of profile likelihood

$$\hat{S} = 0.7^{+0.45}_{-0.39} \,\mathrm{hr}^{-1}$$

 Frequentist upper limit at 95% confidence level:

$$S_{<95\%} = 1.47 \,\mathrm{hr}^{-1}$$

Exercise: adapt 2-sided interval code to calculate this

Use simple on/off counting example

$$n_{off} = 24$$
 $n_{on} = 15$
 $\alpha = 1/3$
 $T = 10.0 \, \mathrm{hr}$

Giving:

$$\hat{S} = 0.7 \, \mathrm{hr}^{-1}$$
 $\sigma_S = 0.42 \, \mathrm{hr}^{-1}$
 $TS = 3.43$
 $\sigma = 1.85$

Good practices

- It is <u>always</u> best to define all the parameters of an analysis before looking at the data.
 - Data selection "cuts"
 - Thresholds for claiming detection.
- It is tempting to adjust the analysis procedure to enhance some small signal, <u>BUT THIS IS</u> <u>FRAUGHT WITH DANGER!</u>
- Best practice is to do a blind analysis. Use MC or side-band data to refine analysis in advance.
- But this is not always possible...

Trials factors

Or the "look-elsewhere effect"

- Often you simply don't know enough in advance to fully determine the analysis, e.g.
 - the mass of the DM particle (or Higgs)
 - the locations of sources in the sky etc...
- So, you must look through the data and search for a significant excess signal ...
- ... and unfortunately you must pay a statistical penalty for doing so.

Trials factors

Or the "look-elsewhere effect"

- If after making N independent tests of for a significant event (e.g N energy channels)
- the most significant test had a P-value of: P_{pre}
- then to account for the number of "trials" you must scale the P-value as: $P_{post} = 1 (1 P_{pre})^N$
- For example, a 4σ event has a P-value of $P_{pre}=6.3\times 10^{-5}$. With 1000 trials, the post-trial P-value of $P_{post}=1-(1-6.3\times 10^{-5})^{1000}=0.06$ which is equivalent to a 1.9 σ event.

Review

- ML provides "cookbook" for estimation and hypothesis testing:
 - estimate parameters: maximum of likelihood
 - errors: curvature of log-likelihood surface
 - TS and significance: is improvement in log- \mathcal{L} over null hypothesis consistent with χ^2 ?
 - MLE is only as good as the model!

Onwards to LAT analysis...

- LAT ML analysis is fundamentally the same a what we have seen here (but more complex).
- Channels organized by sky position and energy (i.e. 3-dimensions). Million channels typical.
- Model is Poisson for each channel with mean determined by:
 - spatial-spectral model provided by user
 - observational response (calculated by software from IRFs provided by LAT team)
- MLE by software: errors, covariances, TS, etc

Eg: 1ES1218+304 w/VERITAS

Discovery of Variability in the Very High Energy γ -Ray Emission of 1ES 1218+304 with VERITAS

Acciari, et al., ApJ, 709, 163 (2010)

Table 1 summarizes the results of the VERITAS observations of 1ES 1218+304. For the spectral analysis, we report an excess of 1155 events with a statistical significance of 21.8 standard deviations, σ , from the direction of 1ES 1218+304 during the 2008-2009 campaign (2808 signal events, 4959 background events with a normalization of 0.33) Figure 2 shows the corresponding time-averaged differential energy spectrum. The spectrum extends from 200 GeV to 1.8 TeV and is well described ($\chi^2/\text{dof} = 8.2/7$) by a power law,

Table 1. Summary of observations and analysis of 1ES 1218+304^a.

	Live Time [hours]	Zenith [°]	Significance $[\sigma]$	$\Phi(>200~{ m GeV})$ [10 ⁻¹² cm ⁻² s ⁻¹]	Units of Crab Nebula flux (E > 200 GeV)
2006-2007 ^b 2008-2009	17.4 27.2	2-35 2-30	10.4 21.8	$12.2 \pm 2.6_{stat}$ $18.4 \pm 0.9_{stat}$	0.05 ± 0.011 0.07 ± 0.004

$$\sigma_{POE} = \frac{\hat{S}}{\sigma_S} = 19.9 \approx \frac{18.4}{0.9}$$

Ratio of value to error - used as "significance" before Li&Ma

$$n_{off} = 4959$$
 $n_{on} = 2808$
 $\alpha = 1/3$
 $T = 27.2 \, \mathrm{hr}$

$$\hat{S} = 42.5 \,\mathrm{hr}^{-1}$$
 $\sigma_S = 2.1 \,\mathrm{hr}^{-1}$

$$\sigma_S = 2.1 \, \rm hr^{-1}$$

$$TS = 474.9$$

$$\sigma = 21.8$$

$$P - value = 2.8 \times 10^{-105}$$

Bayesian statistics

- Likelihood function has no meaning itself, e.g., it is not a probability. Its usefulness comes from theorems such as the LRT.
- MLE belongs to the class of "frequentist" statistical methods: talk about the results of repeated hypothetical experiments.
- Saw how to produce confidence intervals: true parameter value would lie inside the interval in a certain % of hypothetical expts.
- Somewhat awkward language ???

Bayesian statistics

 In Bayesian statistics we talk about the "probability" that the parameters have certain values.

Prior probability density

• Bayes' theorem:

Posterior probability
$$\rightarrow P(\Theta|X) = \frac{P(\Theta)P(X|\Theta)}{P(X)} \propto P(\Theta)\mathcal{L}(\Theta|X)$$
 density

relates probability after experiment has been done to probability before.

 Can think of this as refining our belief about the model through experimental results.

Bayesian upper limits

Or more correctly "Quasi-Bayesian" or "Bayesian-like"

- Bayesian confidence regions correspond to what you would expect...
- ... they are regions that contain a certain fraction of the posterior probability.
- Integrate over parameter from lower bound to find point where integral reaches C% of total.
- In case of multiple parameters, use the profile likelihood. Not strictly a Bayesian approach.

Why have two methods?

The problem of unphysical upper limits

- Unphysical frequentist upper limits occur can occur if the peak of the likelihood is in an unphysical region of the parameter space.
- More complex (or ad hoc) approaches fix this.
- But Bayesian upper limits are not affected.

Example of unphysical MLE

Frequentist UL: $S_{<95\%} = -0.29 \,\mathrm{hr}^{-1}$ - unphysical

Bayesian UL: $S_{<95\%} = 0.43 \, \rm hr^{-1}$ - OK!

```
# ul lima bayes 1d.py - 2013-05-25 SJF
# Bayesian upper limit in Li & Ma problem
from math import *
import scipy.stats, scipy.optimize, scipy.integrate, sys
# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
\# non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
non, noff, alpha, T = (4, 36, 1.0/3, 10.0)
C = 0.95; \# Use 95\% confidence region
def logL(S,B):
    return non*log(max((S+alpha*B)*T, sys.float info.min)) + \
    noff*log(max(B*T, sys.float info.min)) - (S+(1+alpha)*B)*T
def profileLogL(S):
    opt fn = lambda B: -logL(S,B)
    opt res = scipy.optimize.minimize(opt fn, 1)
    return -opt res.fun
S hat = (non-noff*alpha)/T
sig S = sgrt(non+noff*alpha**2)/T
logL max = profileLogL(S hat)
def logPrior(S):
    return log(1);
def logPosterior(S):
    return logPrior(S)+profileLogL(S)-logL max
def integralPosterior(Smax):
    integrand = lambda S: exp(logPosterior(S))
    y, err = scipy.integrate.quad(integrand, 0, Smax)
    return v
total integral = integralPosterior(S hat+100*sig S);
root fn = lambda S: integralPosterior(S) - total integral*C
S ul = scipy.optimize.brentq(root fn, 0, S hat+100*sig S)
print S ul, integralPosterior(S ul)/total integral, total integral
```

Example of profile likelihood

$$\hat{S} = 0.7^{+0.45}_{-0.39} \,\mathrm{hr}^{-1}$$

 Frequentist upper limit at 95% confidence level:

$$S_{<95\%} = 1.47 \,\mathrm{hr}^{-1}$$

Bayesian 95% upper limit:

$$S_{<95\%} = 1.54 \,\mathrm{hr}^{-1}$$

 Our 1ES1218 example isn't very enlightening here, so take:

$$n_{off} = 24$$
 $n_{on} = 15$
 $\alpha = 1/3$
 $T = 10.0 \, \mathrm{hr}$

Giving:

$$\hat{S} = 0.7 \, \mathrm{hr}^{-1}$$
 $\sigma_S = 0.42 \, \mathrm{hr}^{-1}$
 $TS = 3.43$
 $\sigma = 1.85$