Intro to Maximum
Likelihood

Liz Hays

(heavily borrowed from Steve Fegan’s 2013 notes - Thanks, Steve!)



Measurements in y-ray astronomy

¢ |s a source significantly detected?
— If so, what is its flux?
— If not, what is upper limit on the flux?
e What kind of spectrum does it have?
— What is its spectral index?
e What is its location in the sky?
e What are the errors on these values?

e |s the source variable?
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Is a source significantly detected?

— If so, what is its flux?

— If not, what upper limit on the flux?

What kind of spectrum does it have?

— What is its spectral index?

What is its location in the sky?

What are the errors on these values?

Is the source variable?



Why maximum likelihood?

ML framework provides a “cookbook”
through which problems can be solved.

In other methods ad-hoc choices may have to be made.

ML provides unbiased, minimum variance
estimate as sample size increases.

Same may not be case for ad-hoc methods.

Asymptotically Gaussian: evaluation of
confidence bounds & hypothesis testing.

Well studied in the literature.

Starting point for Bayesian analysis.



Maximum likelihood technique

Given a set of observed data

e produce a model that accurately
describes the data, including parameters
that we wish to estimate,

e derive the probability (density) for the
data given the model (PDF),

e treat this as a function of the model

parameters (likeli

e maximize the like

nood function), and

ihood with respect to

the parameters - ML estimation.



Maximum likelihood basics

Data X = {.Tz} — {513'1,5[,'2, ...,CL‘N}
Model parameters: © = {6;} = {61,0,...,00}
Likelihood: L(O|X) = P(X|0O)

Conditional probability rule for independent
events:  P(A, B) = P(A)P(B|A) = P(A)P(B)

CPR Independence

For independent data:
P(X|0) = P({z:}|0©) = P(21|©)P(2, .., tn|©) =
= P(z,|©)P(z4|0) - - - P(xyN|O) HP z;|©

L(O|X) = HP z;|0)



ML estimation (MLE)

e Parameters can be estimated by maximizing
likelihnood. Easier to work with log-likelihood:

In£(0) =InL(O|X) = ZlnP:cz@)

e Estimates of {f;} from solving simultaneous
equations: | gy r
=0

: (0-6)2
I T 5,2

e For one parameter, if we have: L(§) ~e 2%
then: 6%InL 1

T Gaussian
002 |

O-g approximation
so 2"d derivative is related to “errors”




MLE example 1:

X2 fit of constant

e Data: independent measurements of

flux of some source with errors - (2, 0:)

e Model: all measurements are of a
constant flux _ with Gaussian errors.

F
e Probabilities: L Ik
P(xz-|F)=\/2, e
e Log likelihood: "o

In L(F Z(xz —Zlnai—%ln%r



MLE example 1:

e | og likelihood:

-y

In L(F

X2 fit of constant

Constant with respect to F

e Maximize for MLE of F:

Oln L

OF

:in;F:O — | F =

()

> %i/0;

2.1/}

e Curvature gives “error” on F:

1

O

82 lnE

Z=>

OfF —

1

/31




MLE example 2:

Event counting experiment

e Experiment detects n events (e.g. y rays)

e Model: Poisson process with mean of of A:

e -

n! Constant WRT A

e Log likelihood: ImL(\) =nlnA — X —taaul

Data cpt Npred

P(z|0) — P(n|)\) =

e ML estimate and error in Gaussian regime:

olnL n "
=< —1 =|A=
D) "
1 _ 82 lnE _ n s 2 Gaussian
0'_§‘ - 8)\2 5 o 3\2 O-A — 1 approximation
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MLE example 2:

Log -likelihood profiles

P0|sson |Ike|lh00d
Gauss approximation

e Gaussian approximation
| IS reasonable when nis
f “large enough”. In this

| case 05 = n is a good

estimate of the “error”.

2Alog(L)
N

35| n = 100 .
y S S e |f not, estimate errors by

80 85 90 95 100 105 110 115 120

poisson mean 1) finding points where
| T polsson ikelinged 2In L(\) decreases by

Gaussian approximation

1.0 from maximum, i.e.,

2In L(A\) =2InL(\) —

2Alog(L)

A

e n=100: )\ = 100.07g%°

Poisson mean (A) [ n=2 : A — 2 O_*_i ’{g 11



MLE example 2:

| L Al | )

# errors poisson.py - 2013-05-07 SJF

# Evaluate the errors on the Poisson mean

import math, scipy.optimize

n_meas = 2

logL = lambda lam: n meas*math.log(lam)-lam

opt fn = lambda lam: -logL(lam)

opt res = scipy.optimize.minimize (opt fn, le-8)

lam est = opt res.x[0]

logL max = logL(lam est)

root fn = lambda lam: 2.0* (logL(lam)-logL max)+1.0
lam lo = scipy.optimize.brentq(root fn, le-8, lam est)
lam hi = scilpy.optimize.brentg(root fn, lam est, 1le8)
print lam est, lam lo-lam est, lam hi-lam est

[ I
0 Poisson likelihood

Gaussian approximation

2In L()\) decreases by
1.0 from maximum, i.e.,

-0.5

L e oo N e

A

2In L(A\) =2InL()) — 1

-1.5

-2

2Alog(L)

-2.5
A

e n=100: )\ = 100.07.%33

-3

-3.5

-4

Poisson mean (A) o n=2 : A — 2.0+i:’{g
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Hypothesis testing

Compare likelihoods of two hypotheses to
see which is better supported by the data.

Likelihood-ratio test (LRT) & Wilks’ theorem.

Given a model with N+M parameters:
@ — {91, . ..,9N,9N+1, c o ,9N+M}
where N have true values: 67,...,60y

Values of likelihood under two hypotheses:
Ll — £(917°'°79N79N+17°°'79N+M)
Lo=LOF,. . ..0% Oni1,...,08n11)

“Ratio” distributed as:|2(In £; — In Ly) ~ x*(N)

Terms and conditions apply 13




Why is that useful?

(We don’t know the true values of any parameters!)

We make an assumption about | reavreeevessios

ARE ST TEACHING KIDS

the model (the null hypothesis), | feorme N
I REMEMBER READING A BIG

iIn which the parameters have STUDY THAT CONCLOSVELY
@ ” DISPROVED IT MARS AGO.
some presumed “true” values.

‘0
Compute £, from these values TF%(
and £, using MLE for all params. 7§

Hope to ShOW that 2(111 [:1 _ hl LO) http://xkcd.com/892/
is so large that it is improbable from x*(IV),

and, hence, reject the null hypothesis.
Usually cannot say hypothesis is true!

14



MLE example 3:

Source & Background

e Data: events detected in two independent
“channels”, X = {ni,ny}

e Model: Poisson process with
— Unknown “source” and “background”

O = {61,6:} = {S, B} é:(g;):@;)

— Response matrix 5 (7‘11 r1o )

(presumed known) “\ ryr 7o

— Poisson means / ), ri T
A = Ré )\2 o 291 T929



MLE example 3:

MLE

e | 0g Ilkellhood
Data component
InL(S, B) —n1 In(r11.8 + 7“12B) + ng In(re1 S + 'rng)
— (111 +1721)S — (112 + 122) B ‘|‘M

Npred

e MLE: 9InL OIlnl % 1o
55 — 9B =0 = O06=R™ 'n

S o 1 T'929 —T12 nq
B 11722 — T12T21 —T21 T11 Mo

Inl, = ln[,(g, B’) =n1lnn; + nelnng — (ng + ng)

o If likelihood: £(6) ~ ¢ 2©-8)"=7(6-6) [ caussian

7" 9 approximation
errors” are: 0°InL 4

— . = —(E7 )y = I

00;00; | & 0 0

Covariance matrix Fisher information matrix




MLE example 3:

Covariances and errors

e Calculate Fisher information matrix and invert:

2
Ii.:_ﬁ In L Ly o COV(S2',B) _ 7
00,00; | & cov(S, B) 05

e [For our example we get:

T — 1 'r%lnl + T%l’ng T91T99M 1 + T11T19M9
ning \ T21722M1 + 1171270 ragny + rigns

3 ! TN + TNy — 72172271 — T'11T12702
det(R)? \ —T21r22n1 — r117r12n2 rsna + rine

* |n general parameters are correlated, but can
choose set that is uncorrelated. Here they are
{)\17 )\2} glVlng 3\1 — N, 5\2 — Mg, 2)‘ — diag(nl, ng)
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MLE example 3:

Source significance

e Null hypothesis: suppose S =0, then:
In £o(B) = In £(S = 0, B)
=nyInrieB 4+ nolnreB — (112 + r22) B
e MLE for Bglves: Oln Lo _ 0 — B, —
In Lo = In Lo(By) 0B T2 + T2z

r12(ny + n2) +n,In roo(ny1 + nz)
T12 + T22 T12 + T22

e Test statistic: TS = 2(InL; — In L) ~ x*(1)

(7"12 + "“22)”1 +n,ln (7"12 + 7"22)”2
7"12(”1 + ’nz) 7“22(”1 + nz)

n1 + N9

=n,1n — (1 + ny)

TS =2|n;ln

18



On/Off problems

e General set of problems where
Ng — Noff

N1 — Non
)\2 — )\off = BT
Al = Aon = (S+ aB)T

e and where these are assumed to be known:
a - ratio of source to background observation

T - observation time (or other detector
factors)

19



MLE for On/Off problems

® ThenR:T(l Of) R_l

0 1

_l 1l —«
~T7\0 1

In L(S, B) =nop, In|(S + aB)T| + nyssIn BT
—(S+(1+a)B)T
e MLE & (co)variances of S and B are:

~ 1

A 1 0
S:T( _anoff) US_
This is what you cov (S,

would expect!

1
ﬁ”off

1
= (Non + ’nogy)

T2

A 1

B
)="7

2om,off

20



TS for On/Off problems

Test statistic for source detection in On/Off
problems is:

(14 a)nyy,
a(Non + Nofr)

Significance is: ¢ = VTS

(1 + o)y

TS =2 [ny,1n
(Mon + nOff)

+ Mot f In

This is the famous “Li & Ma” formula from:
Apd 272, 317 (1983) - 493 citations on ADS

Probably, you wouldn’t arrive at this formula
using ad hoc estimation methods

P-values: scipy.stats.chi2.sf (TS, 1)

21



Example: Crab Pulsar

off __on

300

250

@ 200
S

3 150

100

50

1GeV<E<3GgV

[T
WL

figure from Abdo et al. (LAT Collaboration)
2010, ApJ, 708, 1254

Non = 2000 S = 8.8 day"!
Nofr= 400 sigmas = 0.4 day-!
a=0.6/035=171 TS = 476.7

T=0.6 x 248 days = 148.8 days VTS =21.8

(approximate numbers) . .
sigma gs = S/sigma s = 22
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Example Code

# lima.py - 2013-05-15 SJF
# Example of Li & Ma significance calculation
import math, scipy.stats

def ts lima(non,noff,alpha):
opa = 1.0+alpha
ntot = non+tnoff
return 2.0* (non*math.log(opa*non/alpha/ntot)
+ noff*math.log(opa*noff/ntot))

non = 2808

noff = 4959

alpha = 1.0/3

T = 27.2

S hat = (non - noff*alpha)/T
sig2 S = (non + noff*alpha**2)/T*x*2
ts = ts lima(non,noff,alpha)
signif = math.sqgrt (ts)

Pval = scipy.stats.chi2.sf(ts,1)

print S, math.sqgrt(sig2 S), ts, signif, Pval

\
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Confidence regions

In problems with multiple parameters.

Saw earlier that we can calculate “asymmetric
errors” by finding points where 2InL decreases
by 1.0: 2-sided 10 confidence interval (68%)

Actually this comes from LRT (Wilks’ theorem).
This is region where null hypothesis that
parameter value has some value cannot be
rejected at given confidence level.

But what to do if likelihood depends on more
than our parameter of interest?

It depends...

24



Profile likelihood

Confidence regions with nuisance parameters
Rolke, et al., NIM A, 551, 493 (2005)

Often we are either concerned only with the
one parameter, or wish to treat the multiple
parameters separately (ignore covariance).

Produce “profile log-likelihood” curve, a
function of only one parameter (at a time),
maximized over all others.

LRT says this should behave as x2(1).

Define confidence region using this function
exactly as before.

25



2Alog(L)

Example of profile

L&Mpfllklh d— o
Gaussian a pproximation -

0 0.5 1 1.5
S [counts/hr]

A

S =0.7705hr o

likelihood

Use simple On/Off
counting example

This is not a significant result, so we
would usually not claim a detection.
Provide an upper limit instead.

Noff — 24

Non = 1O
a=1/3
T'=10.0 hr

Giving:

S =0.7hr""

og = 0.42 hr1

TS =3.43

(-1
26



Example of profile likelihood

2Alog(L)

# conf lima 1ld.py - 2013-05-25 SJF

# 1-D 2-sided confidence interval in Li & Ma problem
from math import *

import scipy.stats, scipy.optimize, sys

# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
C =0.68; # Use 1l-sigma confidence region

d2loglL = scipy.stats.chi2.ppf(C,1)
def logL(S,B):
return non*log (max((S+alpha*B) *T,sys.float info.min)) + \
noff*log(max (B*T,sys.float info.min))-(S+(l+alpha) *B)*T
def profileLogL(S):
opt fn = lambda B: -logL (S, B)

opt res = scipy.optimize.minimize (opt fn, 1)
return -opt res.fun
S hat = (non-noff*alpha) /T
|B_hat = noff/T

loglL max = logL(S hat,B hat)

sig S = sqgrt (non+noff*alpha**2) /T

TS = -2.0* (profileLogL(0)-logL max)

root fn = lambda S: 2.0* (profileLogL (S)-logL max)+dZ2logL
S lo = scipy.optimize.brentg(root fn, le-8, S hat)

S hi = sclpy.optimize.brentg(root fn, S hat, 1le8)
print S hat, S lo-S hat, S hi-S hat, sig S, TS, sqgrt(TS)




Frequentist upper limits

One-sided confidence region using profile likelihood
Rolke, et al., NIM A, 551, 493 (2005)

Two-sided interval One-sided interval

e In two-sided interval search for two points Sy 2
where —2A1n £(S12) = z with x*(z,1)=C

e For one-sided interval (with C>0.5) we need
to find single such point with Sy, > S and for
which 0.5+ x%(z,1)/2 = C (or x*(z,1) =2C —1)

e E.g. for C=0.95 we search —2A1n L(SyL) = 2.71

28



2Alog(L)

Example of profile likelihood

L&M a profile likeliho d—
Gaussian a pproximation -

0 0.5 1 1.5
S [counts/hr]

0.451,..—1
J Frequentlst upper limit at
95% confidence level:

S<g5% = 1.47 hI‘_1

Exercise: adapt 2-sided interval
code to calculate this

e Use simple on/oft
counting example

Noff = 24
Non, = 10
a=1/3
T'=10.0hr
e Giving:
S =0.7hr!
og = 0.42hr 1
TS =3.43
o= 1.85

29



Good practices

e |t is always best to define all the parameters of
an analysis before looking at the data.

— Data selection “cuts”
— Thresholds for claiming detection.

e |t is tempting to adjust the analysis procedure
to enhance some small signal, BUT THIS IS
FRAUGHT WITH DANGER!

e Best practice is to do a blind analysis. Use MC
or side-band data to refine analysis in advance.

e But this is not always possible...

30



Trials factors

Or the “look-elsewhere effect”

e Often you simply don’t know enough in
advance to fully determine the analysis, e.qg.

— the mass of the DM particle (or Higgs)
— the locations of sources in the sky etc...

e S0, you must look through the data and
search for a significant excess signal ...

e ... and unfortunately you must pay a statistical
penalty for doing so.

31



Trials factors

Or the “look-elsewhere effect”

If after making N independent tests of for a
significant event (e.g N energy channels)

the most significant test had a P-value of: P,.

then to account for the number of “trials” you
must scale the P-value as: P,o: =1 — (1 — P,..)"

For example, a 40 event has a P-value of
P,re = 6.3 x 107°, With 1000 trials, the post-trial
P-value of P, =1— (1 —6.3 x 107°)'% = 0.06

which is equivalent to a 1.90 event.

32



Review

e ML provides “cookbook” for estimation and
hypothesis testing:

— estimate parameters: maximum of likelihood

— errors: curvature of log-likelihood surface

— TS and significance: is improvement in log-L
over null hypothesis consistent with x27?

e MLE is only as good as the model!

33



Onwards to LAT analysis...

e | AT ML analysis is fundamentally the same a
what we have seen here (but more complex).

e Channels organized by sky position and energy
(i.e. 3-dimensions). Million channels typical.

e Model is Poisson for each channel with mean
determined by:

— spatial-spectral model provided by user

— observational response (calculated by
software from IRFs provided by LAT team)

e MLE by software: errors, covariances, TS, etc

34



Eg: 1ES1218+304 w/VERITAS

Discovery of Variability in the Very High Energy
Emission of 1ES 12184304 with VERITAS

Acciari, et al., ApJ, 709, 163 (2010)

Table 1 summarizes the results of the VERITAS observations of 1ES 1218+304. For the
spectral analysis, we report an excess of 1155 events with a statistical significance of 21.8

standard deviations, o, from the direction of 1ES 12184304 during the 2008-2009 campaign

(2808 signal events, 4959 background events with a normalization of 0.33)

~-Ray Noff — 4959

Non

T

2808
1/3
27.2 hr

8

Figure 2 shows

the corresponding time-averaged differential energy spectrum. The spectrum extends from

200 GeV to 1.8 TeV and is well described (x*/dof = 8.2/7) by a power law,

Table 1. Summary of observations and analysis of 1ES 1218+304* .

Live Time Zenith Significance (> 200 GeV) Units of Crab Nebula

[hours| o] (10712 em—2 7] flux (E > 200

S

ggs

42 5hr 1
—921hr !

— TS

2006-2007° 17.4 2-35 104 12.2 £ 2.6 stat 0.05 £ 0.011

2008-2009 2-30 | 21.8 I 18.4 £ 0.9 seat 0.07 £ 0.004 0.

474.9

s Nﬁ

21.8

P — value

Ratio of value to error - used as “significance” before Li&Ma

= 2.8 x107'%
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Bayesian statistics

Likelihood function has no meaning itself,
e.g., itis not a probability. Its usefulness
comes from theorems such as the LRT.

MLE belongs to the class of “frequentist”
statistical methods: talk about the results of
repeated hypothetical experiments.

Saw how to produce confidence intervals:
true parameter value would lie inside the
interval in a certain % of hypothetical expts.

Somewhat awkward language 7?77

36



Bayesian statistics

¢ |n Bayesian statistics we talk about the
“probability” that the parameters have

certain values. Prior probability density

e Bayes’ theorem: Likeghood
Posterior
probability > P(0|X) = P(O)P(X|0) x P(©)L(0O|X)

density P(X)
relates probability after experiment has been
done to probability before.

e Can think of this as refining our belief about
the model through experimental results.

37



Bayesian upper limits

Or more correctly “Quasi-Bayesian” or “Bayesian-like”

Physical region @ BayeSian confidence
i regions correspond
/ to what you would
' expect...

e ... they are regions that contain a certain
fraction of the posterior probability.

Unphysical region
Prior is zero

Upper limit

e |ntegrate over parameter from lower bound to
find point where integral reaches C% of total.

e |n case of multiple parameters, use the profile
likelihood. Not strictly a Bayesian approach.

38



Why have two methods?

The problem of unphysical upper limits

e Unphysical frequentist upper limits occur can
occur if the peak of the likelihood is in an
unphysical region of the parameter space.

e More complex (or ad hoc) approaches fix this.

e But Bayesian upper limits are not affected.

39



2Alog(L)

Example of unphysmal I\/ILE

Likelihood profile

T
Li&Ma p ofile like Ih od ——
Gaussian a pproximation

probability [Arbitrary]

sterior

Po

Posterior probablllty

-1.4 -1.2 -1

S [coun

Noff = 30

N, = 4
a=1/3
T'=10.0 hr

! !
-0.8 -0.6

ts/hrl]

MLE is negative - not
physical for source flux.

“Background fluctuation”,
fewer “On” counts than
expected given “Off”

Frequentist UL: S<g5%

Bayesian UL.:

S <95%

-0.4

-0.2

0.5 1 1.5
S [counts/hr]

——> S =—0.8hr!
o = 0.28 hr*
TS = 5.80

o= —2.41

—0.29hr™! - unphysical

0.43hr~!

- OK!
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# ul lima bayes 1ld.py - 2013-05-25 SJF

# Bayesian upper limit in Li & Ma problem

from math import *

import scipy.stats, scipy.optimize, scipy.integrate, sys

# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)

# non, noff, alpha, T = (15, 24, 1.0/3, 10.0)

non, noff, alpha, T = (4, 36, 1.0/3, 10.0)

C = 0.95; # Use 95% confidence region

def logL(S,B):
return non*log (max((S+alpha*B)*T,sys.float info.min)) + \
noff*log(max (B*T,sys.float info.min))-(S+(l+alpha)*B)*T

def profileLogL(S) :
opt fn = lambda B: -logL(S,B)

opt res = scipy.optimize.minimize (opt fn, 1)
return -opt res.fun

S hat = (non-noff*alpha)/T

sig S = sqgrt (non+tnoff*alpha**2) /T

logL max = profileLogL (S hat)
def logPrior(S):
return log(1l);
def logPosterior (S):
return logPrior (S)+profilelLogL (S)-loglL max
def integralPosterior (Smax) :
integrand = lambda S: exp(logPosterior(S))
y, err = scipy.integrate.quad(integrand, 0, Smax)
return y
total integral = integralPosterior (S hat+100*sig S);
root fn = lambda S: integralPosterior(S) - total integral*C
S ul = scipy.optimize.brentq(root fn, 0, S hat+l100*sig S)
print S ul, integralPosterior (S ul)/total integral, total integral




2Alog(L)

Example of profile likelihood

GLaiglsmﬁ aLchl))I:inlwgtlog — - ¢ Our 1 ES1 21 8 example
Isn’t very enlightening
here, so take:

Noff = 24
""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Non = 10
| a=1/3
0 0.55[ o 1 1.5 T _ 10.0 hr
S =070 pr ! e Giving:
e Frequentist upper limit at . .
95% confidence level: S =0.7Thr"
S<o5% = 1.47hr ! og = 0.42hr™*
e Bayesian 95% upper limit: TS = 3.43
S<95% — 1.54hr_1 o = 1.85
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