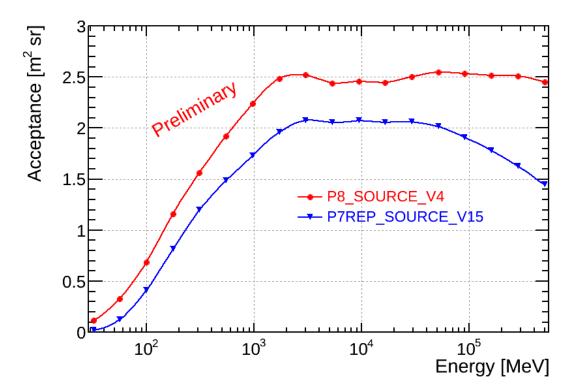
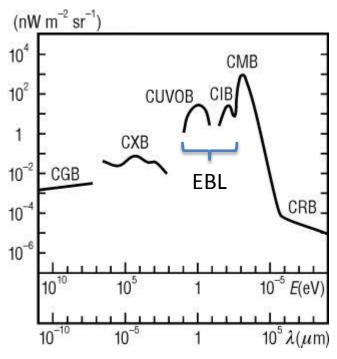

Detection of Extended Gamma-ray Emission from Fornax A and Measurement of the Extragalactic Background Light

Jeff Magill (UMD/GSFC), William McConville (UMD/GSFC), Markos Georganopoulos (UMBC), Lukasz Stawarz (JAXA), Jeremy Perkins (GSFC), for the Fermi-LAT Collaboration

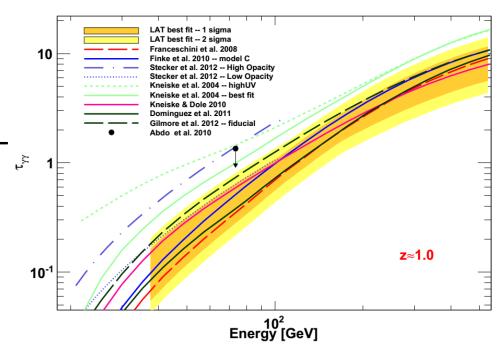
Fermi-LAT (Large Area Telescope)


- Pair production telescope
 - High-Z material converts gamma-rays into electron-positron pairs
- Sensitive to gamma-rays between about 20 MeV and greater than 300 GeV
- Tracker, Calorimeter, and Anti-Coincidence Detector (ACD)

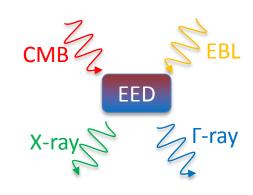

Pass 8

The newest photon event reconstruction to come out of the Fermi-LAT Collaboration (due for public release in about a month)

Extragalactic Background Light (EBL)


- Accumulated radiation from star formation and active galactic nuclei (AGN)
- $\sim 0.1 1000 \, \mu m$
- Direct measurements are difficult because of zodiacal light, sunlight reflecting off local cosmic dust

[&]quot;Extragalactic-background-power-density" by pkisscs@konkoly.hu - Own work by the original uploader. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Extragalactic-background-power-density.jpg#/media/File:Extragalactic-background-power-density.jpg


EBL Measurements

- Lower limits have been calculated using counts of extragalactic sources -- (A&A 515, A19 2010)
- Many people have tried to model the EBL, for example, the Fermi-LAT used spectra from 150 BL Lacs to estimate the EBL using attenuation due to gamma-ray absorption with EBL photons

Measuring the EBL using emission from radio galaxy lobes

- Radio galaxy lobes provide an observable collection of energized electrons
- Cosmic microwave background (CMB)
 radiation inverse Compton (IC) scatters to X rays off the electrons

- Since we know the CMB accurately and have good observations in X-ray, we can characterize the electron energy distribution (EED)
- If we assume IC processes and a low enough contamination from other sources of emission, we could measure IC scattered EBL photons and thus get a measurement of the EBL, currently poorly measured

Fornax A

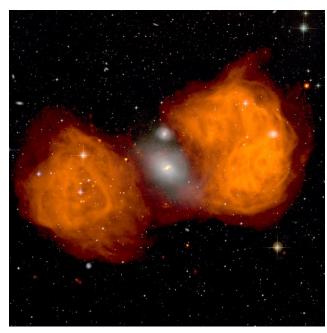
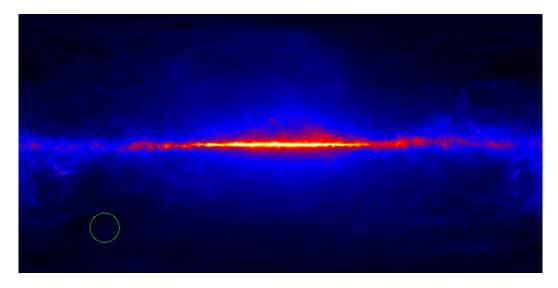
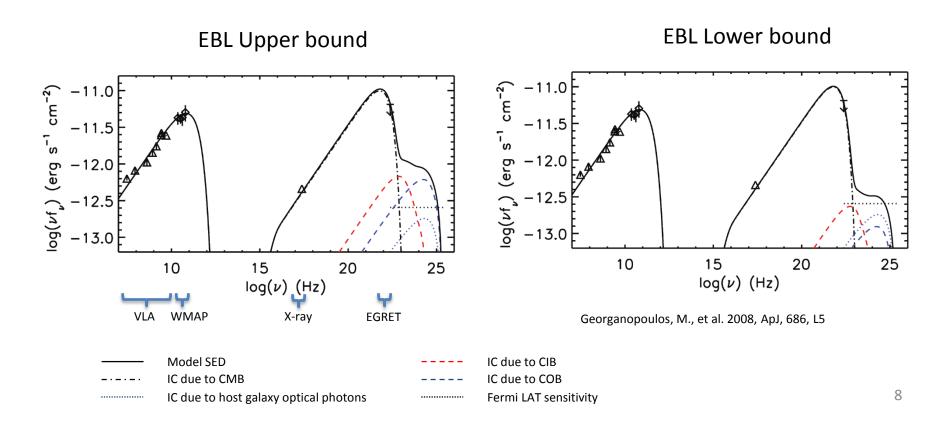
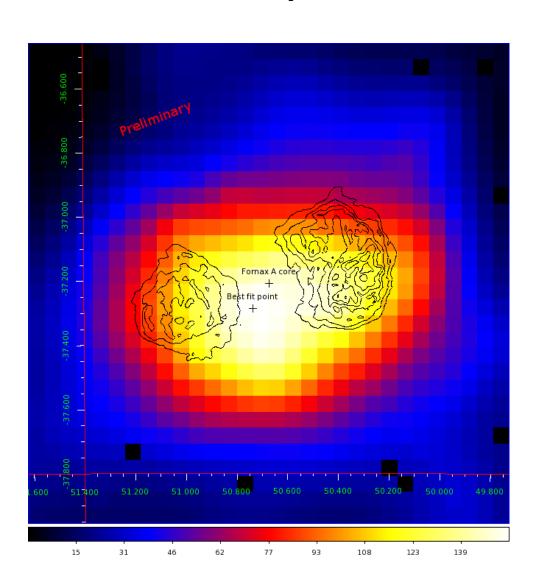



Image courtesy of NRAO/AUI and J. M. Uson

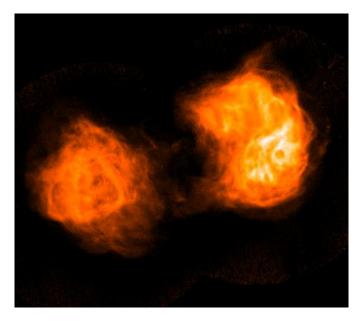

Resides in a quiet region of the gamma-ray sky, (240°, -57°) in galactic coordinates

- Radio galaxy (NGC 1316)
- About 1 degree between the galaxy lobes
- z = 0.005871



Fornax A as an ideal source

Fornax A has an EED which up-scatters EBL light into the Fermi-LAT detection range


Spatial Extension

- In order to use the gamma-rays to measure the EBL, we need to be sure they are coming from the galaxy lobes
- We are limited by poor angular resolution (PSF between ~5° and 0.2°), so checking for extension is challenging
- A point source test statistic
 (TS) map is made by moving a test point source over every position in the region and checking the likelihood
 - Great method for checking for missing point sources, not really rigorous enough to look for extent
- Better "pure gamma-ray" studies are in the works now, but, if we consider information from other wavelengths...

Detection of Extended Emission

- Used VLA radio data (Fomalont et al. 1989) as a spatial map model of the Fornax A lobes
- Obtained a 6 sigma result that the Pass 8 Fermi LAT data is fit by the extended model better than a point model

Pass 7 Same exposure time (73 mo) Pass 8

Model	TS (relative to point source)
Point	
Lobes	16.8 (4.1σ)
Point+Lobes	17.2 (4σ, +2 DOF)

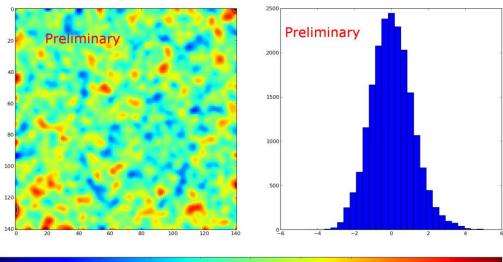
Model	TS (relative to point source)
Point	
Lobes	40.4 (6.3σ)
Point+Lobes	40.4 (6.3σ, +2 DOF)

Test for Core Contamination

- We are not seeing any photons coming from the core of Fornax A
- To quantify our confidence of this, we used the profile likelihood method to force some photons to a point source at the core location and watch how much the likelihood changes

Significance			
	Lobes flux (E>100 MeV)	Point flux (E>100 MeV)	Percent change of lobes flux
1σ	4.98e-9	9.31e-10	-22%
2σ	3.43e-9	2.35e-9	-46%
3σ	2.05e-9	3.74e-9	-68%

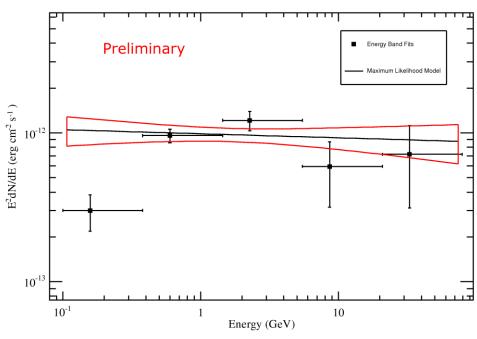

All flux in units (ph/cm²/s)


This means, for example, that we are confident at the 2 sigma level that the Fornax A lobes flux is, at lowest, 46% lower when we consider core contamination.

More Tests

Check the region for any missing background sources with a residual significance map

→ The model looks good

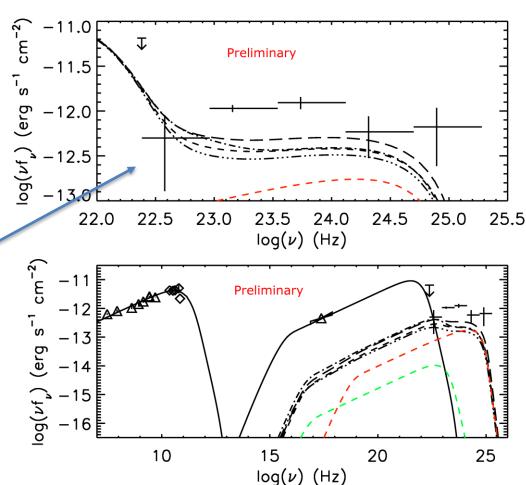

Check for fluctuations in the source over time with a light curve

→ Fornax A is not variable (only 1.25σ significance for variability)

Spectrum

Model	TS (relative to power law)
Power Law	
Log Parabola	4.7 (+ 1 DOF)
Broken Power Law	5.7 (+ 2 DOF)
Broken Power Law with Exponential Cutoff	2.4 (+ 4 DOF)

None of these models are statistically better than the power law.


The maximum likelihood model above is a power law: $dN = \int_{-\infty}^{\infty} (E)^{\gamma}$

13

$$N_0 = 6.16$$
 $E_0 = 1 \text{ GeV}$ $\gamma = -2.03$

Multiwavelength Spectrum

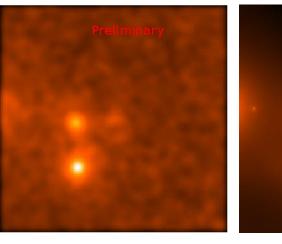
One interesting feature of this Fermi-LAT SED is the lowest energy bin, which is sinking down rather than up. The model there comes from the very well-resolved CMB level.

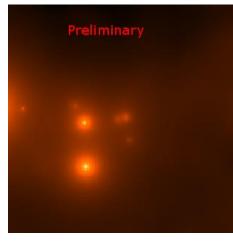
We think this can only be explained two ways:

- 1. The EBL is higher than expected, more in line with the original Stecker model, which is in conflict with recent measurements
- 2. There are potentially hadronic processes contributing

Conclusions

- Extended gamma-ray emission from Fornax A has been detected at high confidence (6 sigma)
- Lower limits placed on the lobe emission considering contamination from the core (-46% at 2 sigma confidence)
- We see that either the EBL is higher than expected, or there are hadronic processes at play


Future Plans


- More tests on the extension, particularly ones without prior assumptions of the morphology
- Further work on the EBL modeling
- Analysis at lower energies than 100 MeV

Supplementary Slides

Analysis Details

Data set	Pass 8 "Jean's Monthly FT1 files", P302	
(RA, DEC) J2000	50.673825, -37.208227	
Time range (MET)	239557417 – 431481603 (August 4, 2008 – September 4, 2014) (73 mo)	
Radius of ROI	10 degrees	
Energy range	100 MeV – 300 GeV	
Maximum zenith	100 degrees	
Event class	128 (Source)	
Science Tools	v09-35-01	
IRFs	P8_SOURCE_V5	
gtmktime filter	DATA_QUAL == 1 && LAT_CONFIG == 1	
diffuse sources	template_4years_P8_V2_scaled.fits isotropic_source_4years_P8V3.txt	
PSC	3FGL (v 2.1)	

Counts map

Model map

- The point source fit converged with 6 background point sources (1 not in the catalog)
- Fornax A detected as a point source with a TS of 165 with a power law spectrum
- Index: -2.03 +/- 0.07
- Flux (>100 MeV): (6.4 +/- 1.1)e-9 ph/cm²/s

Systematics Tested

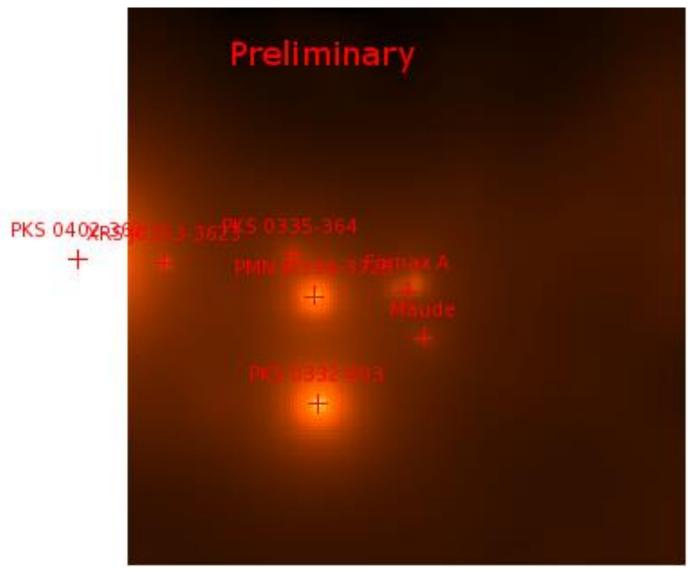
- Earth limb contamination
 - There doesn't seem to be any
- Front/Back separated analysis
 - Individually they look normal, but not sure why the fit changes slightly with explicit summed likelihood
- A_{eff} systematics (bracketing IRFs)
 - Flux (> 100 MeV): (6.363 +0.085 -0.101)e-9
 - Index: (-2.026 +0.033 -0.034)

More Studies To Do

- Scaling the Interstellar Emission Model (IEM)
- Use the Pass 8 PSF classes in summed likelihood
- Look at divided EDISP classes

Earth Limb Contamination

Zenith angle cut	TS	Flux (ph/cm^2/s)	Index (-1)
100 degrees	165	6.4e-9 +/- 1.1e-9	2.03 +/- 0.07
80 degrees	123	6.2e-9 +/- 1.2e-9	2.04 +/- 0.08
65 degrees	73	5.6e-9 +/- 1.4e-9	1.98 +/- 0.11


Even using extreme cuts on the zenith angle, the resulting flux and spectral index do not change. So, there is no significant earth limb contamination.

Front/Back Likelihood

	TS	Flux (e-9) (ph/cm^2/s)	Prefactor (e-13)	Index (-1)
Normal analysis	165	6.4 +/- 1.1	6.16 +/- 0.67	2.03 +/- 0.07
Front	109	6.5 +/- 1.2	6.00 +/- 0.77	2.06 +/- 0.09
Back	63	6.2 +/- 0.5	6.40 +/- 0.38	1.98 +/- 0.04
Front + Back (Explicit Summed Likelihood)	170	6.3 +/- 1.0	6.08 +/- 0.64	2.02 +/- 0.07

- The fit does not change when using only front or back
- Not sure why the explicit summed likelihood isn't exactly the same as the normal analysis

Model Map with Labels

