

The Cherenkov Telescope Array

IMAGE ANALYSIS TECHNIQUES AND COMMISSIONING OF THE GCT CAMERA

JASON WATSON

UNIVERSITY OF OXFORD

D.PHIL SUPERVISOR: DR. GARRET COTTER

FERMI SUMMER SCHOOL 2015

1 JUNE 2015

CTA Telescopes

cherenkov telescope array

Large Size Telescope (LST) Medium Size Telescope (MST)

Small Size Telescope (SST)

Small Sized Telescopes

GATE-CHEC Telescope Gamma-ray Cherenkov Telescope

CHEC-M Commissioning

CHEC Electronics

CHEC-M MAPM: Hamamatsu H10966B

Image Analysis

Gamma

Hadronic

- Hadronic initiated shower
 10⁴ more frequent
- Undesirable due to their deflection from magnetic fields in journey from source
- Background rejection based on different image shape

CHEC-S

- SiPMs have many advantages over MAPMs including:
 - Resistance to high light levels allowing observations under moonlight
 - Excellent Pulse Height resolution
 - Low voltage operation (20 100 Volts)
- >SiPMs require different considerations:
 - Much wider pulse shape pre-amp must shorten SiPM pulses
 - Cross-talk Important to consider for Cherenkov telescopes, can give NSB high amplitudes

Building of CHEC-S prototype to start in November

Particle Showers

Particles travel superluminally in the atmosphere and hence emit Cherenkov radiation

Night Sky Background (NSB)

10 ns

(W. Hofmann, HESS)

- 0.2 Gamma-rays year⁻¹ m⁻² at 1 TeV
- ➢ 12 MHz NSB pixel⁻¹
- Flash duration of individual shower ~ 5 ns
 - \circ $\,$ Very fast trigger required to reject NSB $\,$

⁽A. Bouvier et al. 2013)

Trigger

OXFORD

Sensitivity

Multi-Anode Photomultipliers (MAPMs)

cherenkov telescope array

Silicon Photomultipliers (SiPMs)

- Each pixel is a reverse biased PNjunction
 - (a boundary or interface between two types of semiconductor material, p-type and n-type)
- Photon or thermal excitation in the depleted region will produce a pair of charge carriers (electron-hole)
- Through impact ionization this can trigger an electron-hole avalanche saturating the active area.

