GBM GRB Analysis Tutorial

J. Michael Burgess

What we want to accomplish

- Obtain GBM data (RSPs, TTE,)
- Load RMFIT with data
- Bin data in time and energy
- Select background regions
- Spectroscopy
- Post spectroscopy analysis.

Tools

- Full functioning human brain
- RMFIT (IDL... sigh)
- Python
- Some custom magical tools

Acquiring Data

Indicates you want burst data

The type of data you want

The specific detectors required

```
$> getGBMdata bn 080916009 | --data tte rsp | --nai 0 3 4 --bgo 0
$> getGBMdata -help
   usage: getGBMdata [-h] [-v] {bn,date} ...
   Tool for retrieving GBM data from the FSSC
   positional arguments:
   {bn,date} sub-command help
   bn Triggered data mode
             Daily data mode
   date
optional arguments:
  -h, --help show this help message and exit
             show program's version number and exit
To access help for the different data modes enter [mode] -h ,--
help
```

Loading Data

000	X Select File(s) for Reading				
Filters: *.*fit* =					
Directory					
/Users/jburgess/Documents/lecture/fss/grb_tutorial/į					
Filter	Files				
*.*fit*į	glg_tte_b1_bn080916009_v01.fit				
•	glg_tte_n0_bn080916009_v01.fit glg_tte_n3_bn080916009_v01.fit				
Directories	glg_tte_n4_bn080916009_v01.fit				
**					
Selection					
<u> </u> I					
OK	Filter	Cancel			
		11.			

Loading Data

Options for binning, viewing, etc.

Light curve display

Energy Selection

Nominal GBM energy selections:

Nal: 8-900 keV BGO: 250-38000 keV

Light curve display

Binning

TEAROFF

Temporal Resolution

Signal to Noise

File Misc Options

File Misc Options

Toggle

Zoom:

Toggle

T

Choose the binning method you prefer. Custom binning methods must be made offline. We will discuss this later.

Source Selection

Hit the Select Source button or 'i' on the keyboard

Select the region(s) you would like to fit.

Background Fitting

We want as flat of a line around 1 as possible, however, it is often require to do a spectral fit and redo background until

Select multiple regions off source

Background Fitting

We want as flat of a line around 1 as possible, however, it is often require to do a spectral fit and redo background until

Select multiple regions off source

Select or deselect the detectors you need. Deselecting detectors will show how "bad" a detector is by including it's data in the plot.

Select your model or combination of models.

Unfortunately, the likelihoods in RMFIT are wrong...


```
X Fit Log
==> Dataset

    #3 INCLUDED

==> Data file
                 : /Users/jburgess/Documents/lecture/fss/grb_tutorial/glg_tte_n4_bn080916009_v01.fit
==> Response file: /Users/jburgess/Bocuments/lecture/fss/grb_tutorial/glg_cspec_n4_bn080916009_v07.r
==> Fit interval : -0.064: 70.976 s, 8.036001: 974.7320 keV, channels 4: 125
==> Fitting data...
==> MFIT F95 v1.6 2011 May 16: Fit completed at Sat May 30 18:41:57 2015
TERM: Band's GRB, Epeak
                                               0.000334 p/s-cm2-keV
                               0.01622 +/-
       Amplitude
                     VARY.
                     VARY
                                 501.9 +/-
                                                   28.1 keV
        Epeak 
       alpha
                     VARY
                                -1.018 +/-
                                                 0.0151
                     VARY
                                -2.104 +/-1
                                                 0.0615
        beta
==> Castor C-STAT = 1266.8, DOF = 488
==> Photon Flux = 5.4463 +/- 0.035 ph/s-cm^2 in the interval: 10.00: 1000.0 keV
==> Energy Flux = 1.1150E-06 +/- 1.4E-08 erg/s-cm^2 in the interval: 10.00: 1000.0 keV
    The Normed Covariance Matrix = Correlation Coefficient Matrix:
  1.000 -0.945 0.899 0.367
  -0.945 1.000 -0.848 -0.502
  0.899 -0.848 1.000 0.294
  0.367 -0.502 0.294 1.000
   The global correlation coefficients of the varying parameters are:
   0.966 0.959 0.900 0.604
                                                                Table
                                 Clear
                                            Hide
                                                       Save
```


It is important to save the spectral fits to am SCAT file so that they can be used later

Error Analysis

The one sided errors are typically meaningless unless you have a very bright burst.

You must look at the "profile" errors. Note, these are not marginals so the correlation in the other parameters will be removed.

Error Analysis

PhotonModel: Select Parameters					
Set parameter values for Chisq mapping					
Choose Error Interval by:		Sigma Leve	ls 🖃		
Level of Sigma (or Percentile):					
Band's GRB, Epeak					
☐ Amplitude:	0,0162162	Ĭ 0.01488	ĭ 0,01755		
☐ Epeak:	501,885	Ĭ 389.7	Ĭ 614 . 1		
⊒ alpha:	-1,01797	Ĭ -1.078	Ĭ -0.9575		
□ beta:	-2,10442	Ĭ -2.350	Ĭ -1.859		
Accept Cancel					

Error Analysis

Post Analysis

- Write your own tools to explore the SCAT files.
- Use the included scatReader.py class as a template
- Remember that only symmetric errors can be propagated in classical statistics (Bayesian)

Things not discussed

- Bayesian Analysis
 - Allows for comparison of non-nested models
 - Not sensitive to starting parameters of fits

Things not discussed

Bayesian Analysis

Things not discussed

- Bayesian Analysis
 - Allows for comparison of non-nested models
 - Not sensitive to starting parameters of fits

