Future Directions in Space-based Gamma-ray Detection

Liz Hays

Fermi Summer School 2015

X-ray to Gamma-ray Instrument Sensitivity

Beyond Fermi

- More GeV photons, please!
 - Scale up LAT difficult
 - But ground tels nearing 10 GeV
 - Increase geometry factor
 - Use scintillating fibers, for example, APT concept
- Improve angular resolution
 - Reduce passive material in tracking detector, e.g. ComPair
 - Also aids sensitivity in separation from interstellar emission

APT Scintillating fiber layer

Angular resolution for ComPair (double-sided Si)

X-ray to gamma Instrument Sensitivity

Energy loss of Photons in Matter

Extending below LAT energies

Pair + Compton telescopes

- Wide field of view
- Broad energy range
- Good angular resolution
- For example, ComPair, AstroGAM

Minimize passive material.

Good electron tracking.

Good imaging calorimetry for

Compton mode.

Have to optimize design for two (or more) signatures

Gamma-Ray Pair Polarimetry

Requires excellent spatial resolution for tracking e-/e+

Time Projection Chambers

- High angular resolution
- Good polarization capability
- For example, AdEPT, HARPO, LArGO

Some polarization capability in solid state detectors.

Energy loss of Photons in Matter

Compton Imaging

Soft-gamma-ray Telescopes

Compton Telescopes

- Gamma-ray spectroscopy
 - Nuclear line emission is an important driver
 - Optimize for very good energy resolution
 - Wide field of view
 - Some polarization capability
 - For example, previously
 COMPTEL on CGRO, some
 recent concepts: COSI
 (germanium detectors), ASCOT
 (liquid scintillator with SiPMs)

COSI detectors

ASCOT detector layer concept

Novel Concepts: 3D Scintillation Tracker

Image ionization traces in plastic scintillator from charged particles – Compton or pair interactions.

Don't need full absorption.

An aside on backgrounds

GeV Backgrounds

Dominated by charged particles. Significant gamma-ray background from the Earth ~< 300 MeV.

Light blue = positrons

Red = electrons

Dark blue = Earth

albedo gamma rays

Black = Earth albedo

neutrons

Green = protons

Magenta = alphas

LAT Background Model: Atwood et al., 2009

MeV Backgrounds

The Earth at GeV energies

- The horizon is by far the brightest gamma-ray source in the GeV energy range
 - From cosmic-ray interactions in the upper atmosphere
- The horizon has essentially a fixed angular distance from the zenith
- If you select times when the zenith happened to be near the Galactic center and don't make a zenith angle cut, you can compare the Galactic diffuse emission to the ~1000x brighter limb of the atmosphere

>300 MeV

4

Fermi Summer School 2015

Minimizing Background

- Particle backgrounds from spacecraft
 - Choose materials wisely
 - Detailed mass models
 - Mount instrument away from spacecraft on a boom (e.g. ASCI concept)
- Gamma-ray background from Earth
 - Time of flight
 - Shielding
 - Directional rejection in analysis
 - Go to L2

What is L2?

Joseph-Louis Lagrange

The Lagrange Points are positions where the gravitational pull of two large masses equals the centripetal force required for a smaller mass to move with them. This mathematical problem, known as the "General Three-Body Problem" was considered by Lagrange in his prize winning paper (Essai sur le Problème des Trois Corps, 1772).

Mini-Summary on Backgrounds

- Resolution, resolution, resolution!
 - Tracking resolution resolve pile up
 - Time resolution avoid pile up
 - Angular resolution limit confusion on the sky
 - Energy resolution limit confusion in energy for lines

More Info on Future Space Concepts

- In the USA
 - Goddard Future Space Observatory Workshop:
 http://asd.gsfc.nasa.gov/conferences/future_gamma_obs/program/
 - Gamma Science Interest Group (part of the Physics of the Cosmos Program Analysis Group): http://pcos.gsfc.nasa.gov/sigs/gammasig.php
 - AAS High Energy Astrophysics Division Meeting: https://aas.org/meetings/high_energy_decadal
- In Europe
 - APC (Paris) Workshops
 - Instruments (Nov 2013): https://indico.in2p3.fr/event/8608/timetable/#all.detailed
 - Science (Jan 2013): https://indico.in2p3.fr/event/7243/timetable/#all.detailed
 - Report:
 - AstroMeV + Gamma Light -> First AstroGAM Workshop (Dec 2014): http://astrogam.iaps.inaf.it/Program_Astrogam.html

Summary

- Lots of future science (See previous lectures)
 - Important connections to ground-based telescopes and multimessenger observations
- Tried/true and newer (to space) technologies being explored
- Mission concepts exist optimized for a variety of gamma-ray energies and capabilities (imaging, continuum and line spectroscopy, polarimetry)