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WHAT DO WE KNOW ABOUT GRBS?

The are cosmological
They are the most energetic sources in the Universe

Exhibit a variety of spectral and temporal properties



COSMOLOGICAL

2704 BATSE Gamma-Ray Bursts
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COSMOLOGICAL

Fermi GRBs as of 141202
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1500 GBM GRBs
202 Swift GRBs

LAT GRBs
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RD FITTING
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GRB 080916C
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GRB 090902B
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GRB 13042/7A
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FIRST PULSE: ~2.5 S
BRIGHTER THAN MOST GRBS!

FLUENCE: (2.4£0.1)x103 ERG CM-?

DURATION: ~35 S
MOST FLUENT GRB EVER DETECTED

GLAST Burst Monitor - Trigger 388741620 ~ 2013, Apr 27, 07:47:06.42 UT
GLC_Tool Version 1.7: GLAST_2013117_074709_VC09_GTRIG.0.00

7 keV = 1 MeV

Detectors 10 & 11
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THE BAND
FUNCTION

The Band function is the
canonical function used to
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fit both time-resolved and
time integrated GRB
ohoton spectra &
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CONNECTING THE PHYSICAL
TO THE EMPIRICAL

180
m— FCS -3/2

140

120

100

80

60
40
20

0
—5.0 —45 —4.0 —-35 —3.0 —2.5 —-2.0 —-1.5 —1.0

B

Grouping the

parameters from
spectral fits to all GRBs.
One can easily see

FERMI GBM
SPECTRAL

CATALOGS
characteristic features...

but are they physical?




SYNCHROTRON

fast-cooling

slow-cooling
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SYNCHROTRON

Slow cooling Marginally fast cooling | Fast cooling

Ymin < Ycool Ymin = Ycool Ycool < Ymin

see Beniamini & Piran (2013)
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= Fast Cooling Synchrotron: -3/2
Synchrotron/SSC: -2/3
IC/PAS: 0

Thermal: 1
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to infer models!!
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GRB 0817110A
GRB 0812244 |
GRB 090719A

RB 0908098
GRB 100707A
GRB 110407 A
GRB 110721A
GRB 110920A

HIGH ENERGY CORRELATIONS



cre23522A o8 e Correlations can also

GRB110721A (C+BB)

- GRB080916C (C+BB+PL) ) “ F ‘;: - be related to

- GRB090926A (C+BB+PL)

cosmology. It may be
possible to use them
to obtain redshifts.

GUIRIEC ET AL 2015

HIGH ENERGY CORRELATIONS



MULTI-COMPONENT SPECTRA

In several GRBs, two

b

emission components
have been observed.

Nu F, (photons keV cm™ 5~

One of them well
modeled as a

blackbody
(ohotosphere) and the
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MULTI-COMPON

Even more
components can be
seen in some GRBs
including and extra
power law.
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MULTI-COMPON

NT SPECTRA
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MULTI-COMPONENT FITTING

Alpha typically steepens
with the introduction of the
blackbody making the
synchrotron scenario much
more plausible.

Ep is moved to higher
energies instead of being
forced to compensate for
the vFv peak made up by

the two unresolved
components.

If the non-thermal emission is synchrotron and a
blackbody is present, fitting with only a band function
would recover an alpha as hard as ~0. Using the Band

function with a blackbody can leave a lot of freedom
below Ep resulting in swapping of flux between the
components.



IS THE
BLACKBODY REAL?Y

A Poisson likelihood (Castor
statistic) is used to compute the
significance of the blackbody
component

The likelihood ratio test (maximum
likelihood) is valid for additive
components that are null on the
boundary.

Must use simulations to test
significance.

We find that the blackbody is very
significant (~50) in many cases!
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Department of Statistses, Harvard University, | Oxtord Street, Cambridge, MA 021

STATISTICS, HANDLE WITH CARE: DETECTING MULTIPLE MODEL COMPONENTS
WITH THE LIKELIHOOD RATIO TEST

ROSTISLAV PROTASSOV AND DavID A. vAN DYK

ALANNA CONNORS
Eurcka Scaentific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-301
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BUILDING A PHYSICAL MOD
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Compute synchrotron emission via first
orinciples. Kernel is convolved with a
variable electron distribution in real
time.



BUIL

* SYNCHROTRON COOLING:
 INJECTED POWER-LAW E-
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RETURN TO SUBPHOTOSPHERIC
DISSIPATION

Beginning to fit
physical
subphotospheric
dissipation models to
data.

However, currently
both models can fit

the data
Photosphere
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Non-thermal energy



GOLKHOU & BUTLER 2015

VARIABILITY
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VARIABILITY

GAO ET AL 2012

GRB941020B

GRB941020B

Several methodsto
measure variability.

Difficult to decide which
method to use and what
the values mean.
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SUMMARY

» Things to explore

-Spectral shapes and physical models: What is
the correct spectrum?

-Spectral/Flux correlations: What do these tell

us about the intrinsic GRB physics? Can they
inform us about cosmology?

-Variability: What is the best way to measure
variability? What does it tell us about the
source?



