

Line Analysis Tutorial

Andrea Albert (SLAC)

Fermi Summer School May 29, 2015

Gamma-ray Space Telescope

Code Overview

ROOT-based code

- ROOT is an analysis software used predominantly by particle physicists
- we are going to use python version pyROOT as well as standard interface

Uses "RooFit" package

- for likelihood analyses
- easy to create model PDFs and package does lots behind the scenes for you (like making sure the normalizations are correct)
- let's you do complicated fits (fancy models) and modular (easy to add new pieces)
 - for simple fits don't use RooFit...use e.g. SciPy

Investigate Merit Data

- Merit data (ROOT files) are ROOT Trees
 - you can find some tutorials on ROOT website
 - https://root.cern.ch/drupal/content/howtos#trees
 - https://root.cern.ch/root/htmldoc/tutorials/tree/index.html
- root -I Vela_22d_100z_base_p7r_clean-select.root
- MeritTuple.GetEntries()
 - total number of events in your dataset
- MeritTuple.Show(0)
 - each event in dataset is a different entry...each entry has values defined as "branches"
- MeritTuple.GetEntries("CTBBestEnergy>1000")
 - find number of events above 1 GeV
- MeritTuple.Draw("log10(CTBBestEnergy)")
- MeritTuple.Draw("FT1B:FT1L","","COLZ")

Search for Gamma-ray Spectral Lines

- Annihilation/decay directly into $X\gamma$ (X = γ , Z⁰, H⁰)
 - Location of line in energy spectrum related to m_y
- Advantage: sharp, distinct feature
 - Looking for a "bump" in the energy spectrum

Disadvantage: low predicted counts

04/10/13

Search for Gamma-ray Spectral Lines

- Annihilat This line is very obvious...but we don't
 - Locat have a bright gamma-ray line in the data
 - Advantages of we need to be careful
 - Looking for a "pump" in the energy spectrum
- Disadvantage: low predicted counts

04/10/13

Cautionary Tale -- Low Energy Line Search Example Fit – Including n_{svs} is essential!

Effective Background

F_{sig} and F_{bkg} are the signal and bkg PDFs

$$I_{00} = \sum_{i} \frac{F_{sig}^{2}(\vec{x}_{i})}{F_{bkg}(\vec{\alpha} \mid \vec{x}_{i})}$$

I₀₀ can be interpreted as how much you can distinguish between the signal and bkg PDFs.

$$b_{eff} \sim \frac{1}{I_{00} - 1}$$

Larger I₀₀ -> smaller beff

$$f = \frac{n_{sig}}{b_{eff}}$$

$$signif \approx \frac{n_{sig}}{\sqrt{b_{eff}}}$$

P8 Line Search Accounting for f_{sys} in Likelihood

- Include nuisance parameter (n_{svs}) for systematically-induced line-like features
 - Only detect a significant line if larger than the line-like features we see in the control regions
 - Introduced method in low-energy line paper (A. Albert et al. JCAP10(2014)023)
 - Similar technique used to incorporate J-factor uncertainties dSph analysis
 - Can be applied whenever accounting for systematic uncertainties is important

$$C(E,\alpha) = \left((n_{sig} + n_{sys}) S(E, E_{\gamma}) + n_{bkg} B(E, \Gamma_{bkg}) \right) * G_{sys}$$

$$\sigma_{sys} = \delta f_{sys} * b_{eff}$$

 n_{sys} is constrained using δf_{sys} estimated with control regions

$$G_{sys} = \frac{1}{\sigma_{sys} \sqrt{2\pi}} e^{-n_{sys}^2/2\sigma_{sys}^2}$$
Gaussian constraint on n_{sys}

$$f = \frac{n_{sig}}{b_{eff}} \approx \frac{TS}{n_{sig}}$$

Pass 8 Line Search f_{svs} from Galactic Plane Scans

- There are some common features likely from the effective area (A_{eff})
- Displacement from 0 is mostly from A_{eff}, while spread is from bkg. modeling
- Larger systematic effect with wider windows (since power-law approx. gets worse)

Vela as a Control Sample

- Can use pulse phase to select pure gamma-ray sample
- Vela is a common control sample for LAT systematic investigations
- Don't expect spectral lines from Vela
 - we see how big the "line" in Vela's spectrum are
- Our dataset:
 - ROI: 22° radius circle centered on Vela
 - Energy Range: 100 MeV 100 GeV
 - Standard data quality cuts
 - $\theta_{\rm r} < 52^{\circ}$
 - θ_{7} < 100° for ROI applied w/ gtmktime

Definition of Vela Phase Ranges

On-Pulse: [0.1-0.3, 0.5-0.6]

Off-Pulse: [0.7-1.0]

Line Code

- Top level is FitVela.py
- python FitVela.py -h
- python -i FitVela.py -i Vela_22d_100z_base_p7r_clean-select.root -o
 "test" -f 500. -m 200. -M 800. -S
 Models/Line_P7REP_CLEAN_V15_1D_Vela.yaml -B Models/Vela.yaml -negative -s 0.02

Line Code -- Fit Results

- root -I test_FitResults.root
- FIT_RESULTS.Show(0)
 - What is the significance?
- FIT_RESULTS_SYST.Show(0)
 - What is the fractional size of this line?
 - What is the significance?

Line Code

- Try fitting at 250 MeV, 527 MeV, 1 GeV, 5 GeV, and 9.7 GeV
 - instead of using '-f -m -M' options, call range file
 - -r FitRanges_P7REP_CLEAN_V15_comb_2sig.txt
- Try plotting fractional size vs. Fit Energy
 - FIT_RESULTS.Draw("(Signal_Counts)/(Bkg_Effective):Fit_Energy")
- Try plotting the statistical uncertainty (sqrt(Beff)) vs Fit Energy