

Gamma-Ray Detective Work

Looking for counterparts to unidentified gamma-ray sources

Reshmi Mukherjee

2015 Fermi Summer School

Outline

- I. Gamma-ray skymaps
- II. Multifrequency strategies for identification
- III. Population studies
- IV. Other ideas

Some Readings

I. A couple of old reviews, but good introductions to multi-frequency strategies for unidentified gamma-ray sources:

"Multifrequency strategies for identification of unidentified gamma-ray sources," Mukherjee & Halpern, arxiv.org/abs/astro-ph/0408063

"High-Energy Gamma-ray Sources and the Quest for their IdentificationP.A. Caraveo, XXII Moriond Astrophysics Meeting, arXiv:astro-ph/0206236

II. Book:

Multiwavelength Approach to Unidentified Gamma-Ray SourcesA Second Workshop on the Nature of the High-Energy Unidentified SourcesEditors: K.S. Cheng, G.E. Romero

High Energy Instruments

Cos-B Skymap

"Unidentified sources" are objects in the γ -ray sky with no identifications or known counterparts at other wavebands**. Some of the unidentified sources have remained so since the first surveys of the γ -ray sky carried out by the COS-B satellite in the 1970s.

Of the total 25 sources detected by COS-B, only the pulsars, Crab and Vela, the molecular cloud ρ -Oph and the first extragalactic source, 3C 273 were identified (Bignami & Hermsen 1983).

Hartmann et al. adsabs.harvard.edu/abs/1999ApJS..123...79H

EGRET Skymap

Following COS-B, the next major step in γ-ray astronomy came with the launch of the Compton Gamma Ray Observatory (CGRO) in 1991, when the on-board EGRET

Of the 271 point sources detected by EGRET, the majority were unidentified at the end of EGRET's mission. Some of these remained unidentified since COS-B days.

The nature of these unidentified sources was an outstanding mystery in the late 1990s, early 2000s.

A High Energy Enigma

- Error box of typical EGRET source is large ~ 0.5-10
- Identification of low-latitude sources hampered by bright Galactic diffuse emission.
- Lack of correlation between γ-ray flux & other frequencies.
- Counterpart searches of γ -ray sources usually start with looking for "more of the same" kinds of sources.
- Principle method of ID: Find positional coincidences between EGRET & flatspectrum radio sources. Rely on the statistical evidence that blazars are the dominant population.

CGRO's Lingering Mysteries

NASA/Honeywell Max Q Digital Group, Angela Cheyunski)

- Extragalactic ones are probably blazar AGNs
- Large fraction lie in a narrow band along the Milky Way plane
 - Star-formation regions surrounding the solar neighborhoods?
 - Geminga-like radio-quiet pulsars?
 - Pulsar wind nebulae?
 - Galactic microquasars?
 - Supernova remnants?
 - "dark accelerators?"

Fermi Catalog

The discovery of point-like high energy sources in the γ -ray sky has been one of the most exciting results in the field of γ -ray astronomy, since the advent of the first satellites in the 1970s.

30% of the high-energy gamma-ray sources listed in the second Fermi LA (2FGL) catalog have not yet been associated with counterparts at lower energies.

Fermi Unassociated Sources

The discovery of point-like high energy sources in the γ -ray sky has been one of the most exciting results in the field of γ -ray astronomy, since the advent of the first satellites in the 1970s.

30% of the high-energy gamma-ray sources listed in the second Fermi LA (2FGL) catalog have not yet been associated with counterparts at lower energies.

Case 1:The COS-B field: 2CG 075+00

The COS-B field: 2CG 075+00

The COS-B field: 2CG 075+00

B2013+370

- Blazar-like characteristics, typical of 3EG IDs
- Compact, extragalactic, non-thermal radio source
- Variable at optical and mm (90 GHz, 142 GHz)
- 5 GHz flux of ~ 2 Jy
- SED of 3EG J2016+3657 characterized by a synchrotron peak at lower energies, IC peak at higher energies. Most power output in γ-rays.

- MDM 2.4 m and KPNO 2.1 m telescopes used to obtain a complete set of optical identifications of all X-ray point sources within error circles of 3EG sources.
- Other than # 1 and # 3, all other sources in the EGRET fields are either cataclysmic variables (CVs), or Wolf-Rayet stars or binary O stars, all unlikely to be γ-ray emitters.

Information from Fermi-LAT

- Firm associations for the blazar B2013+370 established with previously unidentified EGRET and Fermi-LAT source.
- Spatial association and the observed variability in the γ -ray and radio bands allow us to establish a firm association between B2013+370 and the previously unidentified γ -ray source 3EG J2016+3657 (1FGL J2015.7+3708)

Kara et al. 2011, arXiv:1112.3312

Identification!

The γ-ray dominated SED, hard X-ray spectrum, and preference for EC models point towards B2013+370 being an LBL or an FSRQ.

Kara et al. 2011, arXiv:1112.3312

The COS-B field: 2CG 075+00

Case 2: The case of 3EG J2227+6122

- 3EG J2227+6122 unidentified source at low Galactic latitude
- X-ray, radio, and optical observations of the EGRET field together point to the possibility that 3EG J2227+6122 is most likely a young, energetic pulsar, with an associated X-ray pulsar wind nebula (PWN), enclosed in a small non-thermal radio shell.

Composite ROSAT HRI image of the 3EG J2227+6122. Except for #1, all the X-ray point sources (plus signs) are bright stars. #1 is the only unidentified HRI source, and is coincident with a bright, hard source seen in the ASCA GIS image (contours).

The case of 3EG J2227+6122

- 3EG J2227+6122 found to be = RX/AX J2229.0+6114 = VLA J2229.0+6114
- Radio source VLA J2229.0+6114 has an incomplete circular shell-like structure, with a high degree of linear polarization evident throughout the shell
- X-ray pulsations detected with a period of 51.6 ms from RX/AX J2229.0+6114
- Morphology, together with the non-thermal spectrum of the X-ray nebula indicates a "composite" supernova remnant = G106.6+2.9
- 3EG J2227+6122 = young and energetic 51.6 ms X-ray/radio pulsar PSR J2229+6114. Confirmed by Fermi-LAT

Radio pulse profile of PSR J2229+6114 at 1412 MHz observed with the Lovell radio telescope at Jodrell Bank

The Unidentified TeV Sky

TeV sources with no known counterparts overlaid on the Fermi-LAT skymap cite: TeVCat

The Unidentified TeV Sky

	+90°						
	^ Name ▼	▲ RA ▼	△ Dec ¬	- Type -	△ Date -	△ Dist →	△ Catalog 🕶
+180°				UNID	•		(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAGIC J0223+403	02 23 12	+43 00 42	UNID	2009.02		Default Catalog
Mark Sand	ARGO J0409-0627	04 09 24	-06 27 00	UNID	2013.11		Source Candidates
	Vela Region	08 33 39	-45 00 10	UNID	1997.09		Other Sources
77	HESS J1427-608	14 27 52	-60 51 00	UNID	2007.07		Default Catalog
	HESS J1507-622	15 06 52.8	-62 21 00.0	UNID	2009.12		Default Catalog
	HESS J1626-490	16 26 04	-49 05 13	UNID	2007.07		Default Catalog
	HESS J1634-472	16 34 57.6	-47 16 12	UNID	2006.01	8.6 kpc	Default Catalog
	HESS J1641-463	16 41 01.7	-46 18 11	UNID	2012.10	0.0 Kpc	Newly Announced
	HESS J1702-420	17 02 44	-42 00 57	UNID	2006.01		Default Catalog
	HESS J1708-410	17 08 24	-41 05 24	UNID	2006.01		Default Catalog
	HESS J1729-345	17 29 35	-34 32 22	UNID	2011.05		Default Catalog
	HESS J1741-302	17 41 00	-30 12 00	UNID	2008.07		Newly Announced
	Galactic Centre Ridge	17 45 39.6	-29 00 22	UNID	2006.02	8.5 kpc	Default Catalog
	Galactic Centre	17 45 39.6	-29 00 22	UNID	2004.05	8.5 kpc	Default Catalog
	HESS J1804-216	18 04 31.2	-21 41 60	UNID	2005.03	6 kpc	Default Catalog
	HESS J1808-204	18 08 36.24	-20 26 44.9	UNID	2012.07		Newly Announced
	HESS J1832-093	18 32 50	-09 22 36	UNID	2011.10		Default Catalog
	HESS J1834-087	18 34 45.6	-08 45 36	UNID	2005.03	4 kpc	Default Catalog
	HESS J1841-055	18 40 55	-05 33 00	UNID	2007.07		Default Catalog
	HESS J1843-033	18 43 00	-03 18 00	UNID	2008.07		Newly Announced
	0FGL J1844.1-0335	18 44 08.87	-03 35 21.4	UNID	2009.04		Source Candidates
	HESS J1857+026	18 57 11	+02 40 00	UNID	2007.07		Default Catalog
	HESS J1858+020	18 58 20	+02 05 24	UNID	2007.07		Default Catalog
	0FGL J1900.0+0356	19 00 02.21	+03 56 48.3	UNID	2009.04		Source Candidates
	MGRO J1908+06	19 07 54	+06 16 07	UNID	2007.08		Default Catalog
	ARGO J1910+0720	19 10 36	+07 21 00	UNID	2013.11		Source Candidates
	VER J2016+371	20 16 02	37 11 52	UNID	2011.08		Default Catalog
	VER J2019+368	20 19 25	+36 48 14	UNID	2014.04		Default Catalog
	MilagroDiffuse	20 20 00	+38 00 00	UNID	2005.12		Default Catalog
	VER J2019+407	20 20 04.8	+40 45 26	UNID	2009.11		Default Catalog
	MGRO J2031+41	20 28 43.2	+41 18 36	UNID	2007.08		Default Catalog

TeV Sources with no Counterparts: *Dark Accelerators*?

- TeV sources with no counterparts.
- All extended?
- May not be "Dark" -- at the limit of X-ray surveys, hadronic sources, new source class?
- Deeper X-ray observations and/or new information may reveal counterparts.

Case 1: The First Unidentified TeV Source

TeV J2032+4130 was the first unidentified source discovered at very high energies, reported by HEGRA (E>100 GeV), with no obvious counterpart in any other wavelength.

It is also the first extended source to be observed in VHE gamma rays.

TeV J2032+4130 – Early Studies

MAGIC Skymap of region around TeV J2032+4130

TeV J2032+4130 – Search in X-rays

•TeV J2032+4130: 50 ks Chandra reveals no compelling counterpart. Related to multiple stellar X-ray sources associated with Cyg OB2?

No counterparts, even after deep X-ray observations: (5ks DDT, 50 ks Chandra)

- -Dual-lobed radio source? (Butt et al. 2008)
- Dark accelerators?
- GRB remnants ?? (astro-ph/0509615)

TeV J2032+4130 – PWN Association?

LAT pulsar: J2032+4127

1.4 GHz image from the Canadian Galactic Plane Survey

TeV J2032+4130 - PWN Associa Perhaps not quite.

See: astro-ph /1502.01465

S

Case 2: Nature of HESS J1303-631

 HESS J1303-631, serendipitously discovered by H.E.S.S. during an observation campaign of the pulsar PSR B1259-63

- The first so-called "dark source" discovered by H.F.S.S.
- More of these sources were discovered by the H.E.S.S. collaboration in the following years
- Identifying and understanding this new class of sources has become an important task for modern ray astronomy

A long-lasting mystery ...

X-ray observations studies of HESS fields

Archival ROSAT image, plus new Chandra image FOV (squares).

Several radio pulsars - but none with sufficient spin-down flux for powering detectable TeV emission from a PWN

- HESS J1303-631 does not appear to have a point source counterpart at X-ray energies.
- Suggested to be a GRB remnant? (astroph/0509615)

A long-lasting mystery ...

PSR J1303-6305:

d=15.8 kpc (Taylor & Cordes 1993)

Revised distance:

d=6.6 kpc (using NE2001, Cordes & Lazio 2002)

initial spin-down power: ~1038 erg/s

HESS J1303-631 -- "dark" accelerator or PWN?

PSR J1302-6313

- No extended emission corresponding to the γ-ray emission region was found, and none of the radio pulsars in the field of view of the Chandra observation were detected.

- The possibility of an annihilating clump of dark matter as the origin of the γ -ray signal was explored by Ripken et al. (2008).

And finally ...

- Significant energy-dependent morphology of the source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the pulsar PSR J1301-6305
- HESS J1303-631, now appears also to belong to the "not-so-dark" group

Case 3: VERITAS Discoveries: Finding new blazars (Follow up of Fermi Sources)

A number of unidentified Fermi sources are expected to be blazars behind the Galactic plane.

VHE telescopes are a good tool for identifying blazars at low latitudes (better localization, higher sensitivity to flux variability).

Blazars behind the Galactic plane

- Discovered in 2009. Flare detected ~10% Crab in 2012.
- Strongly variable from optical to TeV bands, with a peak flux corresponding to ~ 0.3 time bands the steady Crab (at TeV energies).
- Recent optical spectroscopy typical of BL Lacs, z~0.108

15 GHz MOJAVE VLBA image of RGB J0521.8+2112 on 2012 April 29. The radio morphology consists of a bright radio core + apparent one-sided jet that extends for ~20 mas to the west

SED of VER J0521+211

- Shift in VHE power not as dramatic -Could be from onset of KN suppression ($hv \sim m_e c^2$ in e^- rest frame)
- Min value of Doppler factor: δ~ 30
- Energy budget: u_e/u_b < 0.01

Arc	haum	bault	et al	2013
Λ i \circ	. i.a.a.i.i	Nuait	ot ui	

Parameter	Symbol	Value
Electron distribution		
Electron power	L_e [erg s ⁻¹]	7.7×10^{44}
Low-energy cutoff	γ_{min}	3.5×10^{4}
High-energy cutoff	γ_{max}	2.0×10^{6}
Injection index	q_e	3.0
DL 1 L	n (1	4.0 - 1017
Blob radius	R_b [cm]	4.0×10^{17}
Magnetic field	B [G]	0.0025
Bulk Lorentz factor	Γ	30
Escape parameter	η_{esc}	300
Redshift (assumed)	z	0.10

Peak in the γ -ray band, between 10 and 200 GeV -- leptonic one-zone SSC emission model.

Model parameters indicate a relatively weak magnetic field of ~ 0.01 G and a particle dominated jet.

Blazar Confirmation: VER J0521+211

Recently published observations with the Low Resolution Imaging Spectrograph at the W. M. Keck Observatory) show aweak emission feature identified as [N II] λ λ 6548, 6583, which would indicate a redshift of z = 0.108.

Figure 1.14 from Spectroscopy of the Largest Ever γ -Ray-selected BL Lac Sample Michael S. Shaw et al. 2013 ApJ 764 135

Case 4: HESS J0632+057: ??

HESS J0632+057: Only unidentified TeV source in Galactic plane that is point-like.

- Discovered by H.E.S.S. in 2004/2006 (Γ=2.53, F(>1 TeV) ~3% Crab.
- MWL follow-up shows a hard spectrum X-ray source & faint radio source coincident with a massive Be star (MWC148) (Hinton et al 2009).
- Faint point-like, variable radio source (<2" extension,
 0.2-0.4 mJy, Skilton et al 2009)
- Not detected by Fermi LAT
- No binary system identified (e.g. Aragona et al 2010)
- VERITAS non-detection 2006-2009, VERITAS detection in 2010. Implies variability.
- Variable X-ray emission measured by Swift. (Falcone et al 2010))

A new TeV binary system?
Coincident with Be star MWC
148? (Hinton et al 2009).
An unusual isolated massive
star? (confined stellar wind,
Townsend et al 2007)

HESS J0632+057: Dark accelerator or?

The Monoceros Loop SNR?Rosette Nebula region

Green's Catalog position of SNR

radio observations 8.35 GHz

- 30-150 kyrs old
- Distance ~1.5 kpc
- Interaction with the Rosette nebula?

Dark? Identified? No confirmed source type.

Puehlhofer et al. 2007 -First GLAST Symposium

TeV Variability – a new binary??

- **3**0 h in Dec 2006 Jan 2009: not detected by VERITAS (ApJ 687 L94 (2009))
- Excluded with ~4σ confidence that HESS J0632+057 is a steady gamma-ray emitter
- H.E.S.S./VERITAS campaign in 2009/2010
- 8h in Oct 2009: no detection (UL~1.3% Crab)
- 20 h in Feb/March 2010: clear detection (7.5 σ, 1.5% Crab)
- Clearly variable in VHE gamma rays
- Is it a VHE binary? Need detection of orbital modulation (at any wavelength)

And finally...

- Swift X-ray monitoring establishes periodic behavior (T=320±5 days)
 (Bongiorno, 2011) Atel #3153
- VERITAS observations Feb 7/8, 2011 triggered by X-ray activity (Atel #3152)
- •> 8σ, F (E> 300 GeV) ~ 4% Crab
- Confirmed by MAGIC (Atel #3161)

Population characteristics

Radio, infrared and optical counterparts of the γ-ray blazar candidates

- New association method to identify if there is a γ -ray blazar candidate within the positional uncertainty region of a generic 2FGL source.
- Method entirely based on the discovery that blazars have distinct infrared colors with respect to other extragalactic sources (from Wide-field Infrared Survey Explorer (WISE) all-sky observations).
- Method applied to 2FGL unidentified γ -ray sources (UGSs) and to active galaxies of uncertain type (AGUs).

The 3D representation of the locus (known γ -ray blazars are indicated in yellow) in comparison with the selected γ -ray blazar candidates: UGSs (red) and AGUs (black).

See Massaro et al. arXiv:1303.3585

Radio, infrared and optical counterparts of the γ-ray blazar candidates

The archival NVSS radio observations (15' radius) of the γ-ray blazars candidates: WISE J084121.63-355505.9 (left) and WISE J134042.02-041006.8 (right), associated with the Fermi sources 2FGLJ0841.3-3556 and 2FGLJ1340.5-0412, respectively.

The black crosses point to the radio counterpart of the γ -ray blazar candidates selected according to the procedure of Massaro et al. arXiv:1303.3585. Both are clear examples of core dominated radio sources similar to blazars in the radio band also at 1.4 GHz.

Automated Searches

SEARCH FOR GAMMA-RAY-EMITTING ACTIVE GALACTIC NUCLEI IN THE FERMI -LAT UNASSOCIATED SAMPLE USING MACHINE LEARNING (Doert & Errando 2013)

Scatter plots showing some gamma-ray properties listed in the 2FGL catalog (top panels) and parameters used by the machinelearning algorithms (bottom panels) for AGN and non-AGN sources.

Automated Searches

SEARCH FOR GAMMA-RAY-EMITTING ACTIVE GALACTIC NUCLEI IN THE FERMI -LAT UNASSOCIATED SAMPLE USING MACHINE LEARNING (Doert & Errando 2013)

Scatter plots sl List of high-confidence AGN candidates, ordered by R.A.

(This table is available in its entirety in a algemachine-readable form in the online journal. A portion is

Other ideas

SEARCH FOR DARK MATTER SATELLITES USING FERMI-LAT

THE ASTROPHYSICAL JOURNAL, 747:121 (11pp), 2012 March 10

Ackermann et al. 2012: Numerical simulations based on the ΛCDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites.

- Search for these satellites via the γ -ray emission expected from the annihilation of weakly interacting massive particle (WIMP) darkmatter.
- Some dark matter satellites are expected to have hard γ -ray spectra, finite angular extents, and a lack of counterparts at other wavelengths.