Exploring and Understanding the LAT Instrument Response Functions (IRFs) Tyrel Johnson (George Mason University/ @ US Naval Research Lab.) #### **Tutorial Goals** - ► Better understand the LAT IRFs - ► How they are derived - What they mean - Know how to plot different IRF quantities - From IRFs FITS files directly - Using pyIrfLoader python module ## What you need - > Software - > Fermi STs - ► fv ftools FITS viewer - Custom python scripts (linked from schedule) - customIRFplotter.py - plotIRFs.py - Pass7 performance paper (on USB drives) - Ackermann et al. 2012, ApJS, 203, 4 (arXiv:1206.1896) - Much of the info. in this talk gleaned from that paper - The LAT public performance page is also useful http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm ## The LAT Response Effective Area Energy Dispersion $$R(E',\hat{v}';E,\hat{v}) = \underbrace{A_{eff}(E,\hat{v})P(\hat{v}';E,\hat{v})D(E';E,\hat{v})}_{\text{Point-spread}}$$ True Energy & Direction Function **Expected Count Rate** Source Flux $$\frac{dM(E',\hat{v}')}{dt} = \int \int R(E',\hat{v}';E,\hat{v})F(E,\hat{v})d\hat{v}dE$$ Instrument Response Likelihood fitting uses lots of information optimally. This is a double-edged sword. Issues with any of our IRFs can affect fit and can be difficult to disentangle. Slide shamelessly ripped off from E. Charles, FSS2013. TJJ Fermi Summer School 2015 #### How Do We Derive IRFs? #### Average Response - Knowing event-by-event response is tough - \triangleright Simulate a lot of γ -rays, apply cuts, calculate average response - \rightarrow dN/dE μ 1/E - \triangleright 2e8 γ-rays, \log_{10} (E/1 MeV)∈ [1.25,5.75], all-sky #### ► How to bin? - LAT gives us a lot of information... - ➤ Bin in "most-relevant" quantities - \triangleright conversion layer, E, θ , ϕ - Much more goes into event classification # The Effective Area (A_{eff}) (I) - Effective collecting area of LAT: - Depends on geometric cross section - Conversion probability and efficiency - ➤ Instrument livetime fraction Aeff $$(E_i, \theta_j, \phi_k) = (6 \text{ m}^2) \left(\frac{n_{i,j}}{N_{\text{gen}}}\right) \left(\frac{2\pi}{\Delta\Omega_j}\right)$$ $$\times \left(\frac{\log_{10} E_{\text{max}} - \log_{10} E_{\text{min}}}{\log_{10} E_{\text{max},i} - \log_{10} E_{\text{min},i}}\right)$$ $$\times R(E_i, \theta_j, \phi_k), \tag{11}$$ $$A_{\text{eff}}(E, F_l) = A_{\text{eff}}(E) \cdot (c_0(E)F_l + c_1(E)) \tag{14}$$ Figure 35. # The Effective Area (A_{eff}) (II) - Generally, sample entire \(\phi \) phase space well - > True over long time scales - ➤ Variations as much as ~10% on shorter time scales - > few orbits - ► ToOs and ARRs $$\xi = \frac{4}{\pi} \left| \left(\phi \bmod \frac{\pi}{2} \right) - \frac{\pi}{4} \right| \qquad f(\xi) = 1 + q_0 \xi^{q_1}$$ **Figure 36.** Total effective area at 10 GeV as a function of the incidence angle θ and the azimuthal angle ϕ for the P7SOURCE event class. The plot is shown in a Figure 37. Example of A_{eff} azimuthal dependence fit. The plot refers to the bin centered at 7.5 GeV and 30° for the P7SOURCE class, front section—a similar ## Acceptance #### Acceptance is A_{eff} integrated over solid angle ► Units of m² sr $$\mathcal{A}(E) = \int A_{\text{eff}}(E, \theta, \phi) d\Omega$$ $$= \int_0^{\frac{\pi}{2}} \int_0^{2\pi} A_{\text{eff}}(E, \theta, \phi) \sin \theta \, d\theta \, d\phi, \qquad (12)$$ Figure 32. Acceptance as a function of energy for the P7SOURCE class (a) and for the other standard γ -ray classes (b). # Using the A_{eff} FITS file - ➤ Where are they? - ► In CALDB... - > \$CALDB/data/glast/lat/bcf/ea - > How to open? - Favorite FITS viewer (e.g., fv) - With pyfits # Plotting A_{eff} - What if you want to build your own plots - Check effect of livetime for different energies - Different from performance page - Curiosity - **>** ... - Things to remember - These are average responses - > average when combining bins or quantities - ➤ Unless you're adding front and back A_{eff} # The Point-Spread Function (PSF) - Probability density to reconstruct an event with angular deviation δv from the true direction: - \triangleright Depends on conversion layer, energy, θ , and ϕ - ► Ignore • - \triangleright Simulations binned in energy and θ - Deviations in data from simulated PSF - Stack bright puslars and AGN -> in-flight PSF - ➤ Combining event types requires joint cumulative distribution function - FRONT+BACK averaging "ok" for 68% containment - ► 95% containment closer to BACK value #### Form of the PSF $$P(x) = f_{\text{core}}K(x, \sigma_{\text{core}}, \gamma_{\text{core}}) + (1 - f_{\text{core}})K(x, \sigma_{\text{tail}}, \gamma_{\text{tail}}).$$ (38) $$K(x,\sigma,\gamma) = \frac{1}{2\pi\sigma^2} \left(1 - \frac{1}{\gamma} \right) \cdot \left[1 + \frac{1}{2\gamma} \cdot \frac{x^2}{\sigma^2} \right]^{-\gamma}, \quad (36)$$ $$S_P(E) = \sqrt{\left[c_0 \cdot \left(\frac{E}{100 \,\text{MeV}}\right)^{-\beta}\right]^2 + c_1^2}.$$ (34) $x = \frac{\delta v}{S_P(E)}.$ $$\int_{-\infty}^{\infty} K(x, \sigma, \gamma) 2\pi x \, dx = 1; \tag{37}$$ $\int_{-\infty}^{\infty} K(x, \sigma, \gamma) \, \underline{2\pi x \, dx} = 1;$ $$2\pi \int_{0}^{x} P(x')x' dx' = f_{core} * \left(1 - \left(1 + \frac{x'^{2}}{2\gamma_{core}\sigma_{core}^{2}}\right)^{1 - \gamma_{core}}\right) + \left(1 - f_{core}\right) * \left(1 - \left(1 + \frac{x'^{2}}{2\gamma_{tail}\sigma_{tail}^{2}}\right)^{1 - \gamma_{tail}}\right)$$ ## Using the PSF FITS file - ➤ Where are they? - ► In CALDB... - \$CALDB/data/glast/lat/bcf/psf - ➤ How to open? - Favorite FITS viewer (e.g., fv) - With pyfits The σ and γ values are stored in tables of PSF parameters as SCORE, STAIL, GCORE and GTAIL respectively. Because of the arbitrary normalization used in fitting the PSF function, f_{core} must be extracted from the NTAIL table parameter, in conjunction with SCORE and STAIL: $$f_{\text{core}} = \frac{1}{1 + \text{NTAIL} \cdot \text{STAIL}^2/\text{SCORE}^2}.$$ (39) TJJ Fermi Summer School 2015 # The Energy Dispersion (E_{disp}) (I) - Probability density to reconstruct an event with energy deviation (E'-E)/E from the true energy E: - \triangleright Depends on conversion layer, energy, and θ - Generally ignored in likelihood fits - ➤ More important at low energy - ► More important in pass8 - ➤ When finding E_{disp} for a superset of events, can't average - ► Need to manually construct cumulative distribution function - Even for FRONT+BACK in same event class # The Energy Dispersion (E_{disp}) (II) $$x = \frac{(E' - E)}{S_D(E, \theta)E} \qquad S_D(E, \theta) = c_0 (\log_{10} E)^2 + c_1 (\cos \theta)^2 + c_2 \log_{10} E + c_3 \cos \theta + c_4 \log_{10} E \cos \theta + c_5.$$ (48) $$D(x) = \begin{cases} N_L R(x, x_0, \sigma_L, \gamma_L) & \text{if } (x - x_0) < -\tilde{x} & R(x, x_0, \sigma, \gamma) = N \exp\left(-\frac{1}{2} \left| \frac{x - x_0}{\sigma} \right|^{\gamma}\right) \\ N_l R(x, x_0, \sigma_l, \gamma_l) & \text{if } (x - x_0) \in [-\tilde{x}, 0] \\ N_r R(x, x_0, \sigma_r, \gamma_r) & \text{if } (x - x_0) \in [0, \tilde{x}] \\ N_R R(x, x_0, \sigma_R, \gamma_R) & \text{if } (x - x_0) > \tilde{x}. \end{cases}$$ (51) **Figure 66.** Histogram of the scaled energy deviation, as defined in Equation (49), fitted with the function D(x) in Equation (51). The plot refers to the (E, θ) bin Figure 67. Energy dispersion at 10 GeV for front-converting P7_SOURCE # Using the E_{disp} FITS file - ➤ Where are they? - ► In CALDB... - \$CALDB/data/glast/lat/bcf/edisp - ➤ How to open? - Favorite FITS viewer (e.g., fv) - With pyfits The values of the split point \tilde{x} and of the four exponents γ of the energy dispersion parameterization in Equation (51) are fixed as specified in Table 19. Moreover, the relative normalizations are set by requiring continuity at $x = x_0$ and $|x - x_0| = \tilde{x}$ and therefore the fit is effectively performed with a total of six free parameters, which are stored in the IRF FITS files: the overall normalization $N_r = N_l$ (NORM), the centroid position x_0 (BIAS), the two core scales σ_r (RS1) and σ_l (LS1), and the two tail scales σ_R (RS2) and σ_l (LS2). TJJ Fermi Summer School 2015 # Using the *pyIrfLoader* (I) #### **Basics**: ``` >>> import pyIrfLoader #get available IRFs >>> pyIrfLoader.Loader_go() #get your IRFs of choice, note this must be FRONT or BACK version >>> irfs=pyIrfLoader.IrfsFactory.instance().create('P7REP_SOURCE_V15::FRONT') ``` #### A_{eff}: ``` >>> ae=irfs.aeff() #turn phi dependence on or off >>> ae.setPhiDependence(0) #check if phi dependence is on or off >>> ae.getPhiDependence() #get effective area for specific energy, theta, and phi #units are cm^2 >>> ae.value(energy,theta,phi) ``` # Using the *pyIrfLoader* (II) #### PSF: >>> psf=irfs.psf() #for a given energy and theta, what containment fraction does an angular separation #s, in degrees, correspond to? >>> psf.angularIntegral(energy,theta,phi,s) #can get value of the PSF for a specific set of parameters #but recall this is the probability density >>> psf.value(s,energy,theta,phi) #no phi dependence in PSF, but codes wants it anyway # Using the *pyIrfLoader* (III) # E_{disp}: ``` >>> ed=irfs.edisp() #energy resolution is more complicated than psf containment #for 68% cont. want the half width of interval from edisp peak #containing +/-34% from the peak quantile #first need peak of edisp for a given true energy, theta, and phi (no phi dependence) >>> peakE=somethingclever #then what quantile is that #note, for the edisp.integral function, I don't know why the first entry is always 0 >>> qpeak=edisp.integral(0.,peakE,trueEnergy,theta,phi) >>> qmin=qpeak-0.34 >>> qmax=qpeak+0.34 #now you need some method to find the energies where edisp.integral=qmin,qmax ``` >>> energyRes=(emin-emax)/2./trueEnergy <u>NOTE</u>: my slapped-together method of getting energy resolution in *plotIRFs.py* seems to be approximately right, okay for demonstrative purposes, but isn't what is officially used, hope to have documentation soon.