

The GCT's camera for the Cherenkov Telescope Array

Andrea De Franco

Supervisor : Dr. Garret Cotter

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grand agreement n° 317446

CTA Consortium

28 Countries178 Institutions1193 members (375 FTE)Construction through in-kind contributions

Cherenkov Telescope Array (CTA)

CTA design goals:

- sensitivity X10 actual IACT instr.
- energy range ~30 GeV 300 TeV
- large (~8°) field of view for surveys
- improved angular and energy res.

Full sky coverage : 2 sites in Northern and Southern emisphere

Operated as an Open Observatory

CTA Observatory

R

CTA Telescopes

- 23m diameter
- 4.4° FoV
- 1700 Pixels

- 12m diameter
- 7-8° FoV
- 1500-2000 Pixels

- 4m diameter
- 7-10° FoV
- 1300-2000 Pixels

CTA Observatory Site Selection

- Now: Prototypes under commissioning
- 2015: Site selection finalised
- 2016: Start construction
- 2016: First Science with array of Small Telescope (~7-9)
- 2020: CTA complete

GCT for CTA (Dual Mirror Telescope)

Reduce Camera Size (Power Consumption – Cost) Compact photosensor. Smaller pixel angular size More uniform Point Spread Function across the Field of View

GCT Camera

Funding in place for 2 prototype cameras

- GCT-M: Multi Anode Photo Multipliers
- GCT-S: Silicon Photo Multipliers

2048 pixels 32 x 64 pixel modules

MAPM Multi Anode PhotoMultiplier

SiPM Silicon PhotoMultiplier

PMT technology with common photocathode and a matrix of dynode chain.

Very fine pixelated Geiger Mode avalanche photodiodes. (Reverse biased PN junction operating above breakdown voltage)

MAPM Multi Anode PhotoMultiplier

- Fragility (sealed vacuum tube)
- Operation under high voltage
- Aging
- Limited photon detection efficiency
- Sensitivity to Earth magnetic fields
- Limited pulse height resolution

- + Time FWHM (1 ns)
- + Low dark noise

SiPM Silicon PhotoMultiplier

- + Ruggedness
- + Low voltage operation (~ 20-100 V)
- + Resistance to high light levels
- + High photon detection efficiency in principle achievable
- + Insensitivity to magnetic fields
- + Excellent pulse height resolution
- + Rapidly decreasing cost
- Time FWHM (>20 ns)
- Dark Noise
- Strong Temperature dependence
- Cross talk

MAPM Vs. SiPM

PMT technology with common photocathode and a matrix of dynode chain.

Very fine pixelated Geiger Mode avalanche photodiodes. (Reverse biased PN junction operating above breakdown voltage)

GCT Camera

Electronics

GCT Camera - Commissioning

First results on lab test intended to be presented at ICRC 2015 (The first GCT camera for the Cherenkov Telescope Array. *A. De Franco, R. White et. al. for the CTA consortium*)

GCT Camera - Commissioning

cherenkov telescope array

GCT Camera - Commissioning

The GCT's camera for the Cherenkov Telescope Array

Thank you!!!

Andrea De Franco

Supervisor : Dr. Garret Cotter

CTA expected Sensitivity

10⁻⁸

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

10⁻¹⁴

Differential Flux E²dN/dE (erg cm⁻² s⁻¹)

Photon Energy (MeV)

(Hinton & Funk arXiv:1205.0832)

CTA expected Sensitivity - Transients

<u>Could investigate short time scale phenomena</u> (GRBs, microquasar flares, ...)

CTA expected Angular Resolution

0.004° XMM 10 keV 0.1° Simulation with current IACT

0.02° CTA at few TeV

Probing sub structure of SNR shock front

GCT Main Parameters

Camera Parameters		Optical Parameters	
2048	Number of pixels	8.5° - 9.2° ^(b)	FoV ^(a)
6 x 6 mm ² - 7 x 7 mm ^{2 (f)}	Physical pixel size	2283 mm	Focal length
0.15° - 0.2° ^(f)	Angular pixel size	0.58	F-number
~ 0.35 m x 0.35 m x 0.5 m $^{(g)}$	Camera size	38.9 mm/°	Effective Plate Scale (c)
45 kg	Camera Mass	> 60%	Throughput ^(d)
~ 450 W ^(h)	Camera power consumption	0.05° @ 80% ^(e)	PSF size on axis
64	Pixels per electronics module	1.0 m	Focal plane radius
32	Number of electronics modules		
1 GSa/s ⁽ⁱ⁾	Sampling rate		
96 ns ^(j)	Readout window size		
12-bits per sample, all samples	Transmitted data		
~3 Gbps ^(k)	Data rate (at 600~Hz)		

22

Overview Telescope Interface-Pointing Lid motor LEDs -Lid Photodetectors attached to Chiller send/return trigger and digitisation Power and data electronics connections Mounting eyelets LED Flasher **Desiccator** Units Focal plane plate Lid Locking Mechanism Motor Bulk-head Connectors Enclosure Thermal Exchange Unit 23

Overview

Connections to lid assembly