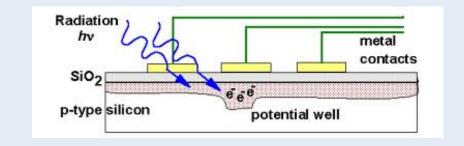


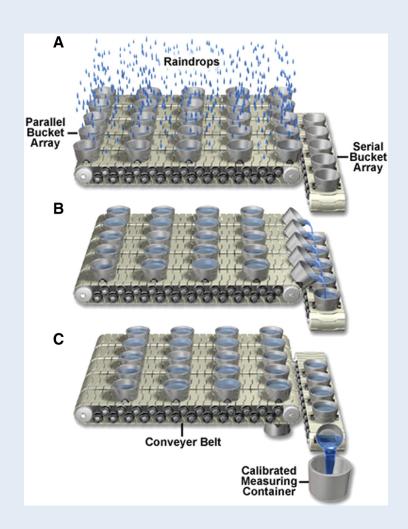
The Speedster-EXD: A New EventDriven Hybrid CMOS X-ray Detector


Christopher Griffith, Abe Falcone, Zach Prieskorn, and David Burrows Fermi Summer School

Outline

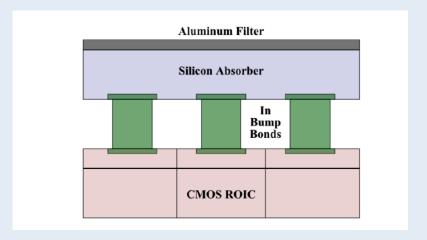
- Background to X-ray Detectors and Current Technology
- Advantages of Hybrid CMOS
- Future Space Missions and Science Motivations
- Speedster-EXD Detector
- Future work

X-ray Detection in Silicon


- X-ray photons cause multiple electron hole pairs (~0.5keV – 20keV).
- Gives us spectral information to make an "Imaging Spectrograph"

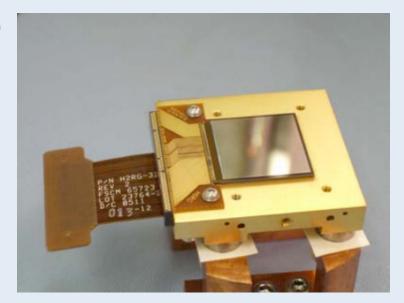
Silicon Detection Schematic

X-ray CCDs


- Current X-ray missions, such as Chandra and XMM, currently use CCDs.
- CCDs have faired very well producing excellent energy resolution and very low read noise.
- However, with the higher collecting area of future X-ray missions, CCDs will not have fast enough readout times and will suffer from pile-up.

Credit: http://cshprotocols.cshlp.org/

Hybrid CMOS Detectors


- Individual pixels can be read out and constrain the source of interest before too many photons saturate a pixel.
- The silicon absorber array is responsible for photon-to-charge conversion via photoelectric absorption
- The CMOS Readout IC (ROIC) functions as a charge-to-voltage converter and a signal processor.

Schematic cross-section of a hybrid CMOS detector

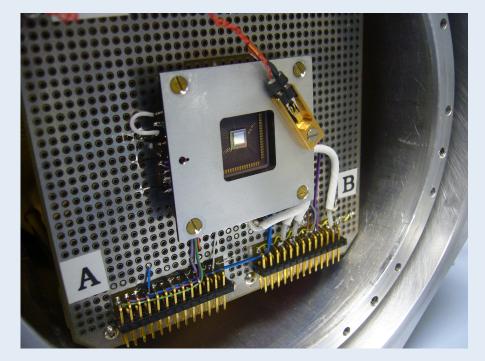
Hybrid CMOS X-ray Detectors (HCDs)

- Hybrid CMOS detectors currently have many advantages over current X-ray CCD's including:
 - Faster readout times to avoid pile-up (necessary for future high-throughput missions such as the
 - Future X-ray Surveyor)
 - More radiation hard
 - Use less power

HCD currently in our lab

Future X-ray Missions

- Current proposed X-ray space missions are high-throughput and have large collecting areas (up to 30X Chandra).
- Some missions (e.g. SMART-X and/or Future X-ray Surveyor) call for high spatial resolution (0.5").
- The larger detector area has driven the need for a new Xray detector to keep up with the amount of X-rays that will be detected.


Artist Impression of the Athena Mission

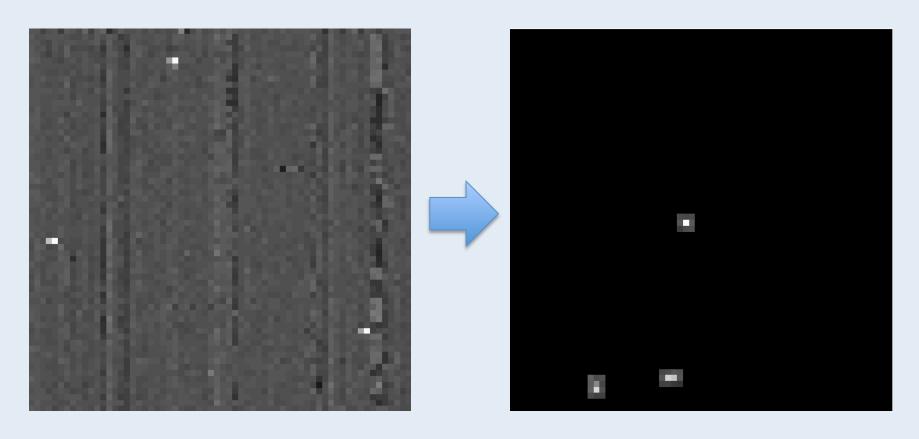
Future Mission Science Goals

- Evolution of large scale structure by mapping the structure of hot gas trapped in galaxy clusters
- AGN feedback and cycles of matter and energy (even at high z) by looking at temperature maps of AGN.
- Super massive black holes and their environment up to z>6
- Study of blazars and bright X-ray binaries
- Studies of the WHIM

Speedster-EXD Hybrid CMOS X-ray Detector

 64 x 64 pixel² prototype detector with 40μm pixel pitch fabricated by Teledyne Imaging Systems.

Speedster-EXD detector in dewar bread board

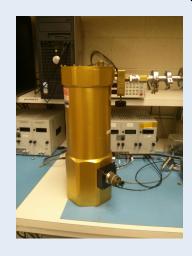

Speedster-EXD Hybrid CMOS X-ray Detector

- Improved Features include:
 - Low noise, high gain CTIA amplifier to significantly reduce IPC. The CTIA amplifier is held at a constant voltage during integration time to prevent signal spreading.
 - In-pixel Correlated Double Sampling (CDS) subtraction to reduce reset noise.
 - Four Gain Modes to optimize either full well capacity or energy resolution.
 - 10kHz frame rate
 - In-pixel comparator to allow sparse readout.

Sparse Readout

- One of the key features of the Speedster-EXD is sparse readout, the ability to read out only pixels that contain X-ray charge.
- The user defines a global threshold for the inpixel comparator and only pixels that exceed this threshold are read out.
- Sparse readout can be run in two modes including single pixel readout and 3x3 readout.

Sparse Readout

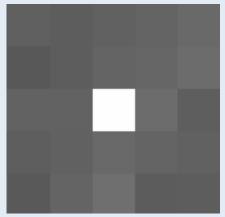


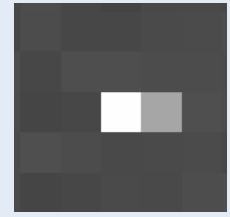
Full Frame Readout Mode:
Comparator threshold set below the noise
floor

3x3 Sparse Readout Mode:Comparator threshold set above the noise floor

Experiment Set Up

- Tested two Speedster-EXD detectors (17014 and 17017).
- Pump the detector chamber down to below 10⁻⁶ Torr and cool the detector to 150K using liquid nitrogen.
- Use an 55 Fe radiation source, which produces Mn K α (5.9keV) and K β (6.4keV) X-rays and Po source, which excites an Al disc to produce Al K α (1.49 keV) X-rays.

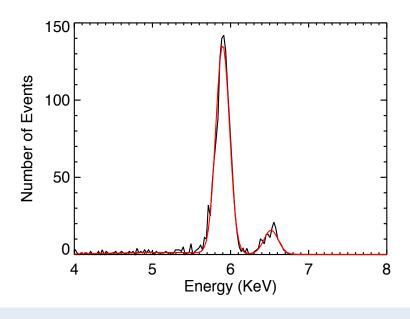

IR Labs HDL-5 Dewar


Speedster located in "Cube" Test Stand

X-ray Data Reduction

- Used 5σ (where σ is the read noise) as primary threshold to find X-ray events and make sure the pixel is a local maximum.
- Use 3σ as secondary threshold to "grade" events, where σ is the read noise.
- Use single pixel events (grade 0) and singly split events (grade 1-4).

Single Pixel Event or Grade 0 event

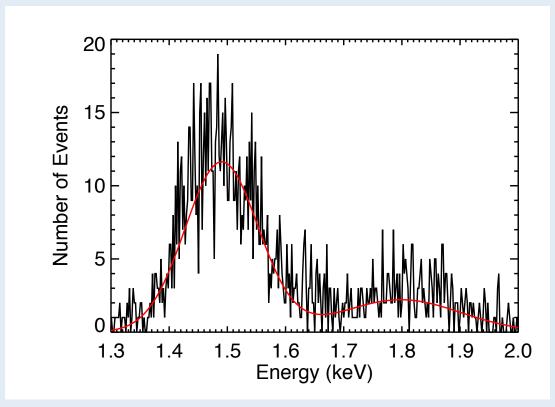


Split Event or Grade 1-4 Event

Energy Resolution

(55 Fe Source Full Frame Readout Mode)

- We fit multiple Gaussians to the measured spectrum and calculate ΔE/E where ΔE = Full Width Half Max (FWHM).
- We measure the best energy resolution to be ΔE/E = 3.5% with FWHM = 206 eV using single pixel events in a high gain mode.



FPA17014

Energy Resolution

(Full Frame Readout Mode Single Pixel Events)

Aluminum Source (1.49 keV)

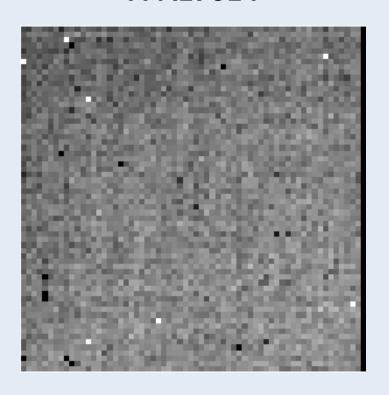
 $\Delta E/E = 10.0\%$ (FWHM = 148eV)

Energy Resolution

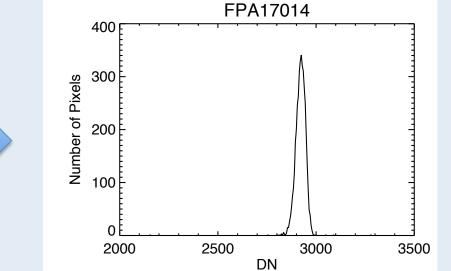
(55 Fe Source 3x3 Sparse Mode)

- Use Sparse 3x3 mode in order to properly grade events.
- We measure the best energy resolution to be
 ΔE/E = 4.2% with FWHM = 247 eV in the highest gain mode, using single pixel events on

FPA17014.


3x3 Sparse Read Out Mode

Gain Variation


- Gain variation is caused by slight differences in the gain constant (e-/DN) on amplifiers on a detector.
- We exposed each pixel to around 10,000 Mn Kα events by taking ~30 million images in about 17 hours to ensure good statistics.
- We were able to create a gain variation map for each detector.

Gain Variation

FPA17014

Gain Variation = 0.80% ± 0.03%



Speedster-EXD Conclusion

- We find the Speedster-EXD and its sparse circuitry to be fully functional.
- We measure energy resolution as low as $\Delta E/E = 3.5\%$ in Full Frame Readout mode and $\Delta E/E = 4.2\%$ in Sparse 3x3 mode at 5.89keV and $\Delta E/E = 10.0\%$ at 1.49keV.
- We also find the IPC to be 0.25% in neighboring pixels, which is a significant improvement over our previous generation detectors.
- We measure the gain variation to be as low as 0.80% ± 0.03%.

Future Work

- We are developing a small pixel detector (~15μm)
 that uses the CTIA amplifier to eliminate IPC and
 meet requirements for 0.5" angular resolution optics
 (X-ray Surveyor and/or SMART-X).
- We are also scaling up the Speedster-EXD design (40μm pixel pitch) to a larger detector (512x512) to meet requirements for Athena-like optics (1").

Full Frame Readout Mode

3x3 Sparse Readout Mode