SVT Beam Accident Analysis

Tim Nelson - SLAC

May 8, 2015

HPS Target History

2010 proposal

- The tracker measured x-y equally well. (We assumed a bigger magnet)
- The beam spot was circular and smaller (10 microns) to take advantage of this
- In proposal, it was said we would melt the target (>1000 °C) in 7 ms at 450 nA.

2011 proposal

- To use PS magnet/chamber and existing sensors, tracker measures y better than x.
- Beam spot can be larger in x: designed at 20 μ m x 250 μ m to avoid destroying target.

These designs assumed heat loss only by radiation!!

Conduction is Critical

Clive Field (a) Jan. 2014 Collaboration Meeting

Temperature profile as calculated for tungsten at 600 nA by an iterative code:

HPS tungsten target 4 microns thick: beam 600 nA, circular spot @= 122 @m, 1 sec exposure with conductive and radiative cooling.

Toy Calculation for Target

- 50 nA beam strikes target, 4 microns thick.
- Power is applied to a plane inside the target silicon 300 microns wide. (320 microns X 4 microns)
- Assume heat must flow through target perpendicular to that surface. In reality, it spreads radially outward, but gives an idea what the drops are.
 - Collisional energy loss in silicon for electrons $dE/dx = 1.6 \text{ MeV cm}^2 / \text{g}$
 - Power = 19.25 (g/cm³) · .0004 cm · 1.6 MeV cm²/g · 50×10⁻⁹ A / 1.6×10⁻¹⁹ C = 616 μ W
 - $\Delta T/I = (6.2 \times 10^{-4} \text{ W})/(173 \text{ W/m-}^{\circ}\text{K})/(2 \cdot 0.0003 \text{ m} \cdot 0.000004 \text{ m}) = 1.5 ^{\circ}\text{K} / \text{mm}$
- Temperature rise is very small, generally agrees with Clive's simulation.

Toy Calculation for Silicon

- 5 nA beam grazes silicon edge, 320 microns thick. Since this is ~3X thicker than our target, should raise FSD counter rates by ~30%.
- Power is applied to a surface along the edge of the silicon 300 microns wide. (320 microns X 300 microns)
- Assume heat must flow through silicon perpendicular to that surface. In reality, it spreads radially outward, but gives an idea what the drops are.
 - Collisional energy loss in silicon for electrons $dE/dx = 2.1 \text{ MeV cm}^2 / \text{g}$
 - Power = 2.33 (g/cm³) · .032 cm · 2.1 MeV cm²/g · 5×10⁻⁹ A / 1.6×10⁻¹⁹ C = 784 μ W
 - $\Delta T/I = (7.8 \times 10^{-4} \text{ W})/(149 \text{ W/m-}^{\circ}\text{K})/(0.0003 \text{ m} \cdot 0.00032 \text{ m}) = 0.054 \text{ }^{\circ}\text{K} / \text{ mm}$
- Temperature rise is negligible.

Conclusion

- No danger of acute mechanical damage from beam strike. (Also no danger of melting the target with any beam that could be generated in Hall B).
- Significant beam dwelling continuously on silicon will lead to extreme radiation damage with unpredictable results, so it is best avoided.
- Full beam dwelling on silicon can also contribute to thermal runaway, so again... best avoided.
- FSD is still important, but there is little hazard of a beam accident destroying an entire sensor.

Silicon Stopping Power

Tungsten Stopping Power

