
134 D I F F R A C T I O N  BY A R A N D O M L Y  D I S T O R T E D  CRYSTAL.  II 

References 

AL HADDAD, M. & BECKER, P. J. (1988). Acta Cryst. A44, 262- 
270. 

AL HADDAD, M. & BECKER, P. (1990). Acta Crysr A46, 112-123. 
BECKER, P. (1977). Acta Cryst. A33, 667-671. 
BECKER, P. & AL HADDAD, M. (1989). Acta Cryst. A45, 333-337. 
BECKER, P. & AL HADDAD, M. (1990). Acta Cryst. A46, 123-129. 
GUIGAY, J. P. (1989). Acta Cryst. A45, 241-244. 

KATO, N. (1976). Acta Cryst. A32, 453-466. 
KATO, N. (1980). Acta Crysr A36, 763-769, 770-778. 
MESSOLORAS, S., SCHNEIDER, R. J., STEWART, R. J. & 

ZULEHNER, W. (1988). Nature (London), 336, 376-365. 
SCHNEIDER, J. R., CONt~ALVES, O. D. & GRAF, H. A. (1988). 

Acta Cryst. A44, 461-467. 
SCHNEIDER, J. R., CON~ALVES, O. D., ROLLASON, A. J., BONSE, 

U., LAUER, J. & ZULEHNER, W. (1988). Nucl. lnstrum. Methods 
Phys. Res. B29, 661-674. 

Acta Cryst. (1992). A48, 134-158 

Modern Equations of Diffractometry. Diffraction Geometry* 

BY D. J .  THOMAS t 

Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England 

(Received 26 June 1990: accepted 29 Juh' 1991) 

Abstract 

The various geometries of area-detector diffractometers 
and cameras are best described using a coordinate-free 
abstract operator notation. Modem methods of geome- 
try, including especially the combined application of vec- 
tors and covectors, are used; they confer the simultane- 
ous advantages of simplifying, virtualizing and unifying 
the analysis, which becomes applicable to all methods 
and machines. A second, and most valuable, prize aris- 
ing from this approach, itself a major theme of this pa- 
per, is the complete avoidance of computationally ex- 
pensive and analytically inconvenient trigonometric func- 
tions in area diffractometry. The very few occasions when 
they are unavoidable have already been discussed fully 
in a previous paper on goniometry. Basic diffraction ge- 
ometry is presented first, giving all the equations neces- 
sary to identify diffraction spots and to calculate a use- 
ful generalization of the Lorentz factor. These are a for- 
malized and extended version of those presented to the 
EEC Cooperative Workshop on Position-Sensitive Detec- 
tor Software held at LURE in Paris in 1986. Then, various 
previously unpublished formulae describing beam diver- 
gence, dispersion and polarization, crystal mosaicity and 
angular widths of diffraction spots are presented. Finally, 
three specific calculations appropriate to the use of an area 
diffractometer are given, including a calculation of win- 
dow sizes, a model of the backstop shadow and a method 
of surveying a diffraction pattern for assessment and pre- 
alignment. 

* This paper is a sequel to Modem Equations of Diffractometry. Gon- 
iometry [Acta Cryst. (1990), A46, 321-343] in which it is referred to as 
Thomas (1990b). The second author with M. R. Hestenes in the refer- 
ence list to that paper (p. 342) should have been E. Stiefel. 

t Present address: European Molecular Biology Laboratory, Meyer- 
hofstrasse 1, Postfach 10.2209, W--6900 Heidelberg, Germany. 

1. Introduction - unification through generalization 

From the earliest days of crystallographic diffraction stud- 
ies, the analysis of diffraction geometry has been heavily 
reliant on the use of trigonometric functions and of radical 
forms, particularly the square root. This was because, at a 
time when electronic computers were not available, roots 
and trigonometric functions could conveniently be read 
from tables, whereas equivalent vectorial (i.e. matrix) cal- 
culations would have been intolerably tedious. With the 
advent of digital computers, particularly in demanding 
'real-time' applications, radical and trigonometric calcu- 
lations became relatively less favourable when compared 
with component calculations using vectors and matrices, 

which are the natural variables for 'area detectors'.~: Al- 
though cameras existed and were in common use, they 
were not perceived as area detectors until their electronic 
successors appeared. Thus, it did not become apparent un- 
til fairly recently that any theory of area diffractometry 
based on vectorial calculations could exist in contradis- 
tinction to that of single-counter diffractometry, where the 
use of angular variables is entirely natural. 

It was not until 1986 at the EEC Cooperative Work- 
shop on Position-Sensitive Detectors in Paris that it be- 
came apparent that the simple vectorial equations long 
used in the Cambridge software package for the Enraf-  
Nonius FAST system were not, in fact, common knowl- 
edge. I was thus encouraged to make them more widely 
known, and hope that this paper achieves that. At the same 
workshop, Dr G6rard Bricogne used the term 'virtualized' 

The misnomer "area detector" (if. 'linear detector', 'single counter') 
is the accepted name for a 2D imaging detector for recording diffraction 
patterns. It usually also bears the connotation of a reusable electronically 
readable device, which in some way justifies the need for a special name: 
in the present paper the term has a more general meaning and is held to 
include any detector capable of measuring a 2D image, including film. 
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to describe the way that this simple vectorial approach 
unified the analysis of all machines, enabling the use of a 
common set of equations. In the intervening five years, the 
geometrical structure of the equations has become clearer 
and the notational representation has been formalized fur- 
ther. 

The importance of a concise and lucid notation is a ma- 
jor theme of the development, and the much less funda- 
mental component representations are given only to help 
in numerical computations. The novel symmetry-based 
metric-invariant notation for rotational calculations ex- 
pounded in a previous paper on goniometry [Thomas, 
1990a (referred to hereafter as Goniometry)] is used to 
achieve that purpose. To summarize, it is based on char- 
acteristically shaped symbolic operators performing func- 
tions as follows: projection onto a line using °[.; projec- 
tion onto a plane using °].; projection onto a plane with 
attendant right-rotation using ._F • or its inverse °]_° ; and fi- 
nally projection onto a plane with a rotation through half 
a turn using °y o. This is shown diagramatically in Fig. 1 
which is derived from Fig.3 of the previous paper. In use, 
the missing argument symbol . is replaced by the alge- 
braic name of the intended line or axis. The double occur- 
rence of the name conveys the metric invariance of the op- 
erators; if one occurrence be held to induce a dependence 
upon a metric, then the other is held to cancel it by be- 
ing mutually contravariant; in other words, if one symbol 
multiplies, the other divides. Thus all of these operators 
are idempotent. Table 1 gives a list of general symbols. 

The discussion here is aimed at a greater geometrical 
rigour than has been usual hitherto, which demands the 
extensive use of covectors in addition to the more famil- 
iar use of vectors proper. The concept of a covector is an 
important one: a covector is defined to be such that it can 
act on a vector to produce a scalar, which means that it 
is naturally susceptible to representation by series of con- 

-I- 

1 

.I. 

.l. 

Fig. 1. An indicator diagram for the rotational operators. This shows ge- 
ometrically the invariant operator .1* which projects its vector argu- 
ment onto a line such as an axis of rotation and the skew operators °[° 
and .]_. which project their vector arguments onto a plane such as an 
orbital plane as shown here with an attendant right-rotation. The sym- 
metric operator °]. similarly projects onto the same plane, but with no 
attendant rotation, whilst the antisymmetric operator °T" projects with 
a rotation of half a turn. The identity operator, 1, marks the unaltered 
operand in its original position. 

tour planes (see Burke, 1985, pp. 18-2 l, 27-31 ). This is in 
strict contradistinction to the well established but geomet- 
rically nonsensical convention where two vectors can ap- 
parently act upon each other to produce a scalar using the 
dot product notation. These concepts are described suc- 
cinctly in much greater detail than can be done here in the 
first few pages of the book by Burke just cited. 

The more modern understanding is that the dot prod- 
uct works only by virtue of a hidden but implicit metric 
tensor, say ~, so that the familiar a • b is more properly 
aGb -= (Ca)b, fortunately having G = 1 (the multiplica- 
tive identity) so long as the space involved is Cartesian- 
Euclidean and properly scaled and dimensioned. These 
geometries are shown in Figs. 2 and 3. Even when numer- 
ically 1, the metric tensor is intrinsically a dimensioned 
quantity, which is a good reason for using it. 

The singular advantage of the more modern metric in- 
variant vector-covector formalism derived from the field 
of applied differential geometry is that considerations of 
the metric tensor become irrelevant. Covectors and vec- 
tors are geometrical duals of each other and their com- 
putational representations are related by the generalized 
inverse. Seen this way, it becomes obvious that a vec- 
tor being acted upon by a covector which happens to be 
its own inverse simply yields the dimensionless metric- 
invariant unit scalar, 1. By defining the operation of conju- 
gation rather than inversion it is possible to do something 
even more useful, which is to maintain the property of the 
result being a metric-invariant scalar, but force it to corre- 
spond with what is known familiarly as the square mod- 
ulus of the vector or, equally, of its conjugate covector. 
Much use can be made of this in the kinematical approx- 
imation to diffraction theory as discussed here. In con- 
ventional matrix representations conjugation corresponds 
simply to taking the transpose. 

2. Representations of the incident beam, 
the scattering vector and the diffracted beam 

Basic diffraction geometry is characterized by just three 
quantities: an incident photon, which suffers annihilation 
(i.e. 'dies');  a newly created radiant photon, usually de- 
scribed conveniently, but incorrectly, as 'scattered'; and 
a periodicity within the crystal, commonly referred to as 
'Bragg planes' (Bragg, 1913). Rather remarkably, ever 
since the earliest days of X-ray diffraction, crystallogra- 
phers have described all three quantities by apparently 
similar vectors in reciprocal space. The theory underly- 
ing this model is far too well established to warrant an 
exposition here. 

It is convenient, and indeed usually necessary, when 
using vectorial methods to be able to represent alge- 
braically at least some quantities in a left-acting and in 
a right-acting form. This choice of representation is cer- 
tainly a necessity when discussing diffraction theory. Tra- 
ditionally, row and column vectors of coefficients have 
been used to represent vector quantities, but these have 
some disadvantages; in particular: they are cumbersome 
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Table 1. General symbol table (see Thomas, 1990a) 

missing argument of a function 
the rotationally skew-symmetric operator 
the inverse rotationally skew-symmetric operator 
plane projective operator equivalent in form to the rotationally symmetric operator 
plane projective operator equivalent in form to the rotationally antisymmetric operator 
the rotationally invariant operator which projects onto the named axis 
an intrinsically dimensionless quantity in vector formation, like a rotational axis operator 
an intrinsically dimensionless quantity in covector formation, like a rotational sixa operator 
a quantity like a pointer or a signed axis 
an angle of rotation 
a rotation operator, and its inverse 
a bidirectional unary skew operator replacing the conventional vector cross product 
conjugate inverse to [.J; [_'] = -["J: ['J - If " l] "J" 
rounded to the nearest whole number 
the absolute value 
the Euclidean norm of a vector or covector 
partial differentiation 
alternative notation for partial differentiation 
standard deviation 
variance 
alternative notation for variance 

variance-covariance of a vector variable 
addition in the sense that increases the absolute value of the result 
tensor outer product 
vector cross product; row vectors cross to row vectors, column vectors to column vectors 
correspondence or inner product; in component representation, A • B = A~ B~ 
for all values of 
(overline) a generalized matrix inverse (Moore, 1920; Penrose, 1955); also arithmetic mean 
(wide hat) implies the presence of a unit normalization 
which implies 
which implies and is implied by 
can be represented by 
equivalent 
a pixel (a single picture element) 

because one must write down three or six times more 
symbols than is really necessary; the resulting equations 
no longer display their behaviour, structure or symmetry  
clearly; the emphasis is placed on the value a given com- 
ponent has in a given representation or space, rather than 
on the physical quantity itself. Here, simple symbols such 
as (S and S} are used in preference to represent the inci- 
dent beam as left- and right-multipliers. The symbols used 
in this section are listed in Table 2. The similarity of  this 
notation to that used by Dirac (1958) is not accidental; the 
type of  form that appears, for example,  in (2.3), (3.3) or 
(7.1) is always immediately recognizable as a scalar, and 
the equations here will a lways remain true if flipped from 
left to right across the page, which corresponds to per- 
forming a transpose in matrix notation. However,  there is 
a deeper underlying geometric interpretation which will 
start to become apparent shortly. 

Whatever  the precise definition of our notational sym- 
bols, it must always be possible to extract from them the 
values of  the physical quantities they represent. Thus, by 

analogy with the conventional equation of  physics for the 
energy of a photon: E = cp = chk = ch[[k][, we can say 
(apart from an arbitrary factor) that we should be able to 
write 

E=ehl t (SI I  .', > E=ehl lS) l l  (2.1) 

if S) represents a photon. This demands that we can assign 
a unique scalar modulus to both left- and right-forms of  
symbols such as S}: 

II(SII = IIS)ll. (2.2) 

In fact, this modulus is vary rarely needed because (S and 
S) can be defined in such a way that they act on each other 
to produce the square modulus directly: 

( s s )  ( - II (sII  IlS)ll) = ~ (2.3) 

Quantities which act on each other in this way must nec- 
essarily behave as a mutual covector-vector  pair, but the 
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Fig. 2. The action of a covector upon a vector. Covectors are represented 
faithfully and naturally by a series of contour planes. Here, a free co- 
vector acting on a vector is represented by a downhill contour inter- 
secting the tail of the vector and by an uphill contour one unit higher 
marked with a broad arrowhead. The value of the product is the num- 
ber of contour levels between the head and the tail of the vector, which 

1 is 27 in the case illustrated. It is characteristic of this representation 
that larger covectors have their contours closer together. Perhaps it 
takes some time to accommodate this appararent perversity, but it is 
quite sensible when it is realized that it is the density of contour lines 
that is proportional to the magnitude of the covector. 

9a 

a 

.Ca 

Fig. 3. The rigorous geometrical interpretation of a scalar (i.e. dot) prod- 
uct. This diagram shows a secure geometrical construction represent- 
ing the scalar product of two vectors which necessarily involves the 
use of a metric tensor, ~, here represented by a circular contour on 
the left or (only apparently) by an elliptical contour on the right. The 
construction proceeds as follows: draw the unit circle representing 
the metric centred on the tail of one of the vectors, say a; then draw 
both tangents to the circle which meet the head of this vector; the line 
joining the two tangential points is the unit contour of the covector 
conjugate to this vector. The scalar product of this first vector with the 
second, say b, is then generated by allowing this constructed covec- 
tor to act upon the second vector directly, in this case giving the value 

1 The diagram on the right shows that this construction survives 27 • 
variations in the metric, which is not true of less rigorous definitions 
based upon the right-projection of one vector upon the other. When 
handled with proper regard for metric variability, the scalar product is 
thus seen to be more complicated than the action of a covector upon 
a vector as proposed in this paper. Indeed, the apparent simplicity of 
the scalar product is an artefact of always working in a Cartesian- 
Euclidean space. 

comple t e  s y m m e t r y  of  the equa t ion  means  that both sym-  
bols mus t  c o m p r e h e n d  both propert ies.  None the less ,  it is 
of ten useful to regard (S as a covec to r  in reciprocal  space 
and S) as a vector  in reciprocal  space. These  ass ignments  
are reversed  in direct  space. S o m e  notat ional  symmet r i e s  
and co r re spondences  with dual and Four ier  spaces are dis- 
cussed  more  ful ly in Append ix  A. 

It is a f requent ly  used conven t ion  to d e m a n d  that 

( S S ) = I  (=¢~ E = c h )  (2.4) 

which  specifies the use of  d imens ion le s s  reciprocal- la t t ice  
units.* For the purposes  of  the present  discussion,  and in 
m a n y  practical c i rcumstances ,  the normal iza t ion  implici t  
in this equat ion  is not  imposed;  indeed,  it is preferable  
not to do so to avoid  the risk of  mak ing  (2.3) appear  to 
lose its mean ing .  However ,  when  (2.4) has been  imposed ,  
the fact can be noted by placing a wide  hat over  the o ther  
equat ions  which  are sensi t ive to normal iza t ion ,  e.g.  (7.1). 
Equat ion  (2.4) also, rather inconvenient ly ,  has the side- 
effect  of  redef in ing both the scal ing and d imens ions  o f  
energy.  

Clearly, w h e n  work ing  in a Ca r t e s i an -Euc l i dean  space 
with basis axes, x, y, z, and with the rece ived  conven t ions  
of  matr ix  algebra,  the forms 

( S ~ ( S x  Sy S z )  and S ) ~  S~ (2.5) 

S t  

will  be sat isfactory computa t iona l  representa t ions  for the 
character  in reciprocal  space of  the m o r e  fundamenta l  
quanti t ies ,  (S and S). 

Important ly,  a c o l u m n  is not  necessar i ly  associated 
with a vector  and a row with a covector ,  as can be seen 
f rom the conjugat iona l  t ransposi t ion of  an equa t ion  which  
does  not  imply  any geomet r ica l  change  when  the symbols  
invo lved  c o m p r e h e n d  both propert ies  s imul taneously .  It 
is appropria te  to remark,  too, on the comple t e  arbitrari- 
ness o f  row and co lumn  vectors  at this point,  for  they 
are just  a conven t ion  for p lac ing reso lved  c o m p o n e n t s  
on paper. Had his tory so dictated,  we  could  just  as well  
now be p remul t ip ly ing  matr ices  with co lumn  vectors  and 
pos tmul t ip ly ing  them with row vectors  or, indeed,  do ing  
some th ing  comple t e ly  different.  Any  sense o f  a t t achment  
to c o m p o n e n t  representa t ions  can also be depreca ted ,  for 
the c o m p o n e n t s  change  if the chosen  set o f  axes changes ,  
and are thus also arbitrary. A notat ion like IS or S) should  
therefore  be thought  o f  as the pr imary  geomet r ica l  repre- 
sentat ion o f  a physical  quantity,  rather than as a shor thand 

* This is the 'egalitarian' photocentric view of the world, in that it ap- 
pears to make all photons equal, but it is probably more useful as an 
aide memoire for the A -4 dependence of Rayleigh scattering. The ar- 
gument is that a photon has no means to measure the size of a scatterer 
other than by reference to its own wavelength, necessarily regarded as 
the unit of length. Thus, the perceived area of any given scatterer, say 
atmospheric molecules, necessarily comes out proportional to A-2. The 
amplitude of the scattering is proportional to this area providing that it is 
very small, but the intensity is amplitude squared, giving the well known 
A -4 dependence responsible for the blue colour of the sky. 
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Table 2. Symbol table for §2 

the speed of light 
the energy of a photon 
Planck's constant 
wavenumber, Ilkll 
a wave vector 
modulus of momentum 
the periodic structure of minus the mean incident-beam wave vector, and its conjugate 
Cartesian components in a reciprocal-space vector representation of S) or (S 

for the capricious and purely conventional row and col- 
umn vectors which can be used to represent the quantity 
computationally. 

3. The diffraction condition 

The diffraction of  light was first discovered by Francesco 
Maria  Grimaldi (1655), at some time between 1637 and 
1654 (Westfall, 1980), but it was not until 1912 that the 
diffraction of  X-rays was first observed by Laue (Laue, 
1912; Friedrich, Knipping & Laue, 1912). The large body 
of  analysis available to describe X-ray diffraction tends to 
occlude the simplest and most  important physical princi- 
ples involved: both energy and momentum must be con- 
served. In the absence of  phonon coupling, these two 
alone can summarize the most important features of  an 
X-ray diffraction experiment in the form of nothing more 
complicated than an isosceles triangle. 

Following the conventions of the last section, the con- 
servation of  momentum can be represented in a very in- 
tuitive manner,  either in direct space by covectors, or in 
reciprocal space by vectors [see equation (11.1) in Gon- 
iometry]: 

(T = ( R -  (S 4==~ T> = R> - S>. (3.1) 

This is illustrated in Fig. 4. 
It is important to realize that the formal derivation and 

interpretation of this simple equation are not actually triv- 
ial: in particular, it must be remembered that its most rig- 
orous derivation comes from the balance of periodicities 
in space and in time; the interpretation in terms of mo- 
mentum is a simplification justifiable only in terms of the 
physics of the present century. T) and S) refer to similar 
objects (two photons) and to fit into the equation we de- 
mand that R) describes the crystal in a compatible way: 
thus we are forced to hold that - S )  is proportional to the 
momentum given to the new (scattered) photon by the 
(dying) incoming one, and that R) is proportional to the 
momentum given to the new photon by the bulk crystal - 
the so-called 'crystal  momentum' .  

The equation representing conservation of  energy dur- 
ing diffraction hides a further complication: the energy 
of  a photon is classically given by E = cp = chk, but 
this formula is quite different to that of  the classical ki- 
netic energy of  the crystal, which would be of  the form 
E = pZ/2m, so the two enter the equation in a different 
way. However,  the mass,  m,  of  even the tiniest crystal- 

lite is so enormously large in comparison with the equiv- 
alent mass of  the photons that the kinetic energy of  the 
crystal can be ignored completely. We thus set the ener- 
gies of  the two photons to be equal, directly by setting 
liT> II - IIs> II, but  more conveniently by using symmetric  
quadratic forms proportional to E 2 [see equation (11.2) 
in Goniometry]: 

<TT> = (SS>. (3.2) 

The inadvisability of imposing (2.4) always can be seen 
immediately, since it all but deprives the present equation 
of any meaning, the more especially when the incident 
X-rays are not exactly monoenergetic. 

Direct substitution of (3. I ) into (3.2), remembering that 
(SR> -- <RS), gives the equation that we call the 'diffrac- 
tion condition'  [see equation (11.3) in Goniometry]" 

<RR) - (SR) - (RS> - <RR) - 2 (RS) 

- (RR) - 2 (SR) = 0. 
(3.3) 

(R 

(S 

/ 

s) 

Fig. 4. Basic diffraction geometry as covectors or as vectors. The co- 
vector diagram on the left displays most clearly the balance of per- 
iodicities between (S, (T and (R in direct space. The 'direction' or 
'sign' of each covector is marked by the positioning of its label, which 
occupies the more positive side of an arbitrary contour [this is some- 
what simpler than the method used by Burke (1985)]. The equivalent 
conjugate diagram (on the right) using vectors in reciprocal space is 
much more familiar. The vector, S), is defined to point in the direction 
from the crystal to the source, and thus in the opposite direction to the 
motion of the photons. This choice is justified on several grounds: it 
is convenient to use the nominal crystal position as the origin for all 
quantities in direct space; the equations, fortuitously, have fewer mi- 
nus signs; perhaps more importantly, there is a direct analogy with 
the analytical quantum-mechanical formula for the scattering event, 
where the incoming photon being destroyed and the newly created 
outgoing photon appear in mutually conjugated forms. 
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Table 3. Symbol table for §3 et seq. 

the multiplicative identity operator; representable by a unit matrix 
basis covectors in the analysis of the diffraction angle 
relates direct-space and reciprocal-space representations of a scattered beam 
the cosine function 
the symmetric form (SO'_[_~X) = (Xq2_[O'S) = -(Sk~T~X ) = - ( x o y o s  ) 
the antisymmetric form (S~.[~X) = (X~]_~S) = -(S~]_~X) = - (XtI'j'~S) 
direct-space representation of a scattered beam 
direct-space conventional unit cell; inverse of F; columns are conventional-lattice vectors 
reciprocal-space conventional unit ceil; inverse of F; rows are reciprocal-lattice vectors 
Miller indices, (h, k, g) 

A 
a generalized form of the Lorentz factor; conventional form is [L[; see T below 
direction cosines 
mass 
a point on a detector faceplate, (Qy, Qz) 
the periodic structure of a Bragg plane in the diffracting position, and its conjugate 
the symmetric form (Skg.LkI'R) = (ROJ~S) 
the sine function 
the periodic structure of the scattered-beam wave vector, and its conjugate 
the periodic structure of a Bragg plane (referred to the crystal frame), and its conjugate 
the conventional radial variable used in the rotation method (Arndt & Wonacott, 1977) 
the antisymmetric form (S~_[~R) = (R~]_kI, S) = - (R~f~S)  = -(Sk~]_~R) 
the antisymmetric form (SdP.]-dPR) = (R,I,]_6/,S) = - (R6/,f6/,S) = - (S~ld/,R) = L-1 

a very small perturbation in the diffraction angle (about ~) 
a signed representation of the instantaneous axis of rotation (i.e. axis of angular velocity) 

rotation through q~ about '~ 
the diffraction-angle invariant operators 
the diffraction-angle skew-symmetric operators 
the inverse diffraction-angle skew-symmetric operators 
the diffraction-angle symmetric operators 

the (Amdt-Wonacott) diffraction angle (about qd) 

a signed representation of the axis of total rotation from datum 

rotation through "~ about k~, and its inverse 

If S) is held fixed, this is the equation of the Ewald sphere 
(Ewald, 1913); if R) is held fixed, it is the equation of the 
'diffraction plane',  which bisects the vector representing 
R) in reciprocal space. The important consequences of 
holding T) fixed are the subject matter of another paper 
(Thomas, 1992a). 

Very frequently, a crystal is turned until a given recip- 
rocal-lattice point is in the diffraction condition. If X) is 
used to denote the reciprocal-lattice point in some da- 
tum orientation of the crystal, then it is always possible 
to write 

(R = <X~t ~ R) = #X>, (3.4) 

where # is an operator describing the rotation of the crys- 

tal from the position at which ¢ = 0, and ~ is its inverse. 
Table 3 gives a list of symbols for this and the following 

sections. The definition of @ follows that in Goniometry, 
and expands to 

# = kVlkV + 9.]9 sin ~ + ~J_9 cos ¢,  (3.5) 

trivial cancellation of = 1 and division by 2 gives the 
following fundamental equation for the diffraction angle: 

<xx> 
- -  - ($9[9  X) - (SgfgX)  sin e -  (S ~_[_gX) cos ¢ = 0. 

(3.6) 

This equation is most commonly interpreted in terms of 
the rotation camera, when "~, is known as the Arndt- 
Wonacott angle, but is intrinsically completely general, 

being any axis of total rotation from datum. 
The derivatives of R) are important during the refine- 

ment of experimental parameters, when they couple into 
the normal equations of least-squares-minimization pro- 
cedures by the chain rule of differential calculus. Only 
two derivatives of (3.4) are commonly used, which are 

~Tx>R> = ~, (3.7) 

and 

~7~R) = ~7~ ,X)=  9.]-tI,~X)= 9_[9R). (3.8) 

which substitutes into (3.4),itself substituted into (3.3). A This latter form has already been seen, embedded in 
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(11.1) of Goniometry. Another derivative with respect to 
changes in the orientation of the total rotation axis could 
also be defined, but has so far found no application. Much 
more useful, though, is to consider the effects of a very 

small extra rotation about an axis, say ,~, not generally the 

same as that of the total rotation from datum, ~. Calling 
the angle of this extra rotation 05 and treating it as variable 

but asymptotically zero, 05 ---, 0, so that ~ ---, 1, whilst 
is held to be temporarily constant enables the replacement 

, ,~ ,~  (3 .9 )  

and (3.8) can be replaced by the more general 

(3.10) 

This shows rather spectacularly that the most general case 
has equations of exactly the same form as those for the 
rotation method, the only difference being that when the 
symbol ~ f ~  appears as the equivalent of the derivative 
with respect to the diffraction angle, V~,, it must be re- 

placed by I,J-~. The operator ~ representing total rota- 
tion is unaffected so long as the equations are evaluated 
at ~b = 0, which is always possible. A rather helpful 

way to view the equations is to observe that ~ represents 
the transformation of reference axes between the current 
crystal position and its datum position, whilst I,_[,I, picks 
out the instantaneous effects of the motion of the crystal. 

Clearly, on a rotation camera proper, ~ and ~ are synony- 
mous and 05 can differ from "~, only by shift of origin. 

The reciprocal-lattice vector, X), used above is defined 
in terms of the Miller indices, h, and the conventional re- 
ciprocal unit cell at datum, F [equivalent to the transpose 
of UB in Busing & Levy (1967)], by 

(hp\ 
(X = (hF = (h, k, g) (kP } 

~(h,k,e) kTx kTu 

= (X~ X u X~) .  

h z) 
kff z 

(3.11) 

m 

It will be seen that F splits naturally into rows repre- 
senting direct-space covectors or reciprocal-space vec- 
tors, here written such that (h~ corresponds directly with 

the conventional reciprocal-lattice vector a *T, (k~ with 

b *T and ( ~  with c *T. The differential of (X with respect 

to F can be written conveniently in contracted symbolic 
form as 

Vv(X = h , (3.12) 

which is just about as simple as it could be, though per- 
haps it displays its computational structure more clearly 

when expanded slightly into 

O(X _ h ~ h i ,  
O(hF 

O(X _ _ _ k = k l ,  (3.13) 
O(kF 

0(X _ g = gl. 
o(e~ 

The trivial expansion of these vector derivatives of vec- 
tors into a matrix form serves only to satisfy the ac- 
cepted convention that the result should be a matrix form; 
that the simpler scalar form is possible is an indication 
of the fact that (X, (h~, (k~, ( ~  are all defined on the 
same metric which consequently vanishes from the re- 
sult. The natural placement of the putative small shifts in 
the (transposed) unit-cell vectors is on the left-hand side 
of these derivatives, though this shifts to the right-hand 
side of the scalar Miller indices in conventional compo- 
nent representations. These derivatives couple F directly 
to (X - X) and hence to calculated spot positions using 
the chain rule of the differential calculus, so they enable 
F to be refined from the observations. 

4.  D e t e c t o r  g e o m e t r y  

It has been traditional for every film or detector geome- 
try to be analysed using its own special coordinates and 
system of equations, often with considerable ensuing con- 
fusion and inconvenience. Examples which can be cited 
are: the film axes, YF and Z F, used by Arndt & Wona- 
cott (1977, p. 82) for the rotation camera, which do not 
translate into the detector axes, Y and Z, of its electronic 
successor, the Enraf-Nonius FAST system; the confus- 
ingly similar axes used by Klinger & Kretsinger (1989); 
the angular detector coordinates, "r and u, used on some 
cylindrical neutron area detectors (Stansfield, 1983) or the 
ordinary spherical coordinates, 0 and ¢, used for a similar 
purpose in some analyses of the shape of diffraction spots 
(Roth & Lewit-Bentley, 1986). Other specialized appli- 
cations lead to further definitions of angles (@ inter alia 
Schwarzenbach & Flack, 1989). This diversity of repre- 
sentation is unnecessary, since the vast majority of X-ray 

area detectors can be represented adequately] by a 'plane 
of detection', either real or assumed. This can be defined 
and described by a unified mathematical structure based 
on three bound vectors (Thomas, 1986c) or, equivalently, 
the three conjugate covectors. The most basic vectorial 
description is based on the vectors d r', d z and d ° .  The 
symbol definitions for this section are given in Table 4. 

t The representation ceases to be adequate when analysing the profiles 
of diffraction spots across the plane of detection if the convergence or 
divergence of the scattered beams is such that the shape is materially 
different in the real detection region from that in the assumed region. 
This problem never occurs with a flat solid-state detector like that in the 
FAST system, in film or in a phospholuminescent imaging plate, but it 
can be quite severe for thick drift chambers with focusing optics. 
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B 
B,~ 
Bn~ 
F 
d 
d I, d ° 
Id 
d-L 
d' 
d 'z, d ' °  
D 
z D 
D z 
liD, DII 

D' 
ID, ' D ,I 
lID' ' D'II 

I 

J 
k 
# l j k  

M 
0 
X, y ,  Z 

Y 
Z 

Table 4. Symbol table for  §4 

(Beta) the set of detector-comer positions (or beta-lights on the FAST system) 
(Beta) the position of the nth detector comer, written computationaily as a column vector 
(Beta) the ith component of a Cartesian representation of B,~ 
the formal name of the calibration-grid geometry transformation (Thomas, 1989) 
the set of detector vectors, interpretable as a matrix, [d Y d z d ° ] 
vectors describing the geometry of the detection plane, written computationally as column vectors 
transposes of d I, written computationally as a row vector 
auxiliary vector from the crystal to the detector, meeting the detector plane perpendicularly 
the set of image vectors 
vectors describing the geometry of the image plane; d ' °  = d ° 
the set of detector covectors, interpretable as the matrix inverse to d 
a bound covector delineating the detector I coordinate, written computationally as a row vector 
transpose of ID, written computationally as a column vector 
a bound covector describing the detector plane, and its transpose 
the set of image covectors, interpretable as the matrix inverse to d' 
a bound covector delineating the image I coordinate, and its transpose 
a bound covector describing the image plane, and its transpose; lID' = liD 

either Y or Z 
number and dummy index, usually associated with Y components 
number and dummy index, usually associated with Z components 
coefficients of the M transformation (Thomas, 1989) 
(Mu) the formal name of the monitorable short-term distortion transformation (Thomas, 1989) 
label for the origin of the detector coordinates 
the labels of the laboratory axes 
the label for the first of the detector faceplate axes (usually vertical) 
the label for the second of the detector faceplate axes (usually horizontal) 

The bound vector from the nominal crystal position to the 
point on the detector plane that we wish to call the ori- 
gin is called d ° . It is not necessarily perpendicular to the 
plane of detection. These vectors follow the same type 
of notational convention whereby a left to right flip, in 
this case of the subsidiary label and the main symbol, de- 
notes the conjugate transpose. The Dirac-like brackets are 
thus not used, being unnecessary, and can be reserved for 
reciprocal-space usage. The axes of images collected with 
X-ray area diffractometers [e.g. FAST systems (uniquely 
at the time of writing)] are conventionally called Y and 
Z, and it is convenient to use the same nomenclature 
also for cameras [e.g. multiwire proportional counters 
(MWPCs), film and phospholuminescent imaging plates 
(PIPs)]. Then the direction and scaling of the dimension- 
less detector-plane coordinates, ( Q y ,  Q z),  are defined by 
the vectors d Y and d z. Typically, but not necessarily, d Y 
and d z are mutually perpendicular and have equal lengths 
of I ram. The three vectors can be combined to form the 
basic direct-space description of the detection plane as a 
single algebraic symbol with the computational structure 
of a 3 x 3 matrix: 

Y z 0 d~ d~ dz 
do 

dz y d z d ° 

(4.1) 

Many calculations of detector geometry involve the ma- 
trix inverse to d, called D, having the structure of a triplet 

ofcovectors,  YD, ZD and liD: 

z D D =  ,'~ 

liD 

YD~ YD~, YDz] 
ZD~ ZD~, ZD~ . 
lID z IIDy lID z 

(4.2) 

We must have here (by definition) Dd = 1, where 1 is 
the multiplicative identity operator, which expands to the 
3 × 3 unit matrix. The vectors and covectors defining d 
and D suffice for calculations of diffraction geometries, 
but an extra vector, perpendicular to the plane of the de- 
tector, appears in calculations of the illumination during 
calibration procedures [Thomas, 1990b, equation (4.3)]. 
This vector is called d ±, and it is given by 

dYAd z ZdAYd 
d ± = DIIIIIDd ° ,~ d ° (4.3) 

ZdAYd dYAd z 

where the vertical line between D II and liD denotes the ac- 
tion of the rotationally invariant operator defined in Gon- 
iometry and generically written as "1". (The fraction has 
the computational structure of an outer product of column 
vector times row vector, all divided by the inner product 
of row vector times column vector, making an operator 
representable as a deponent 3 × 3 matrix.) Equation (4.3) 
also exposes the connection in three-dimensional space 
between a covector and a bivector composed from two 
vectors lying in a contour plane characterizing the covec- 
t o t .  
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It is often even more convenient  to map the image of  
the diffraction pattern on the detector faceplate onto a di- 
mensionless unit square (Thomas, 1989), and a similar 

set of  ' image vectors ' ,  d ' y ,  d ' z ,  d ' ° ,  is appropriate for 
handling the result of this transformation. On the Enraf -  
Nonius FAST system, the comers Of the unit square are 
deliberately chosen so that they align with the positions 
of  the four beta-lights, which are small radioactively ex- 
cited light sources tucked away in the occluded comers of 
the snub-rectangular faceplate (see Fig. 5). The equations 
of this section can accommodate  any detector, simply by 
defining a fixed rectangle over the imaging area; the four 
comers of the rectangle then assume the r61e of  B0, B1, 
B2 and B3 on the FAST system. 

The matrix of  image vectors, d ' ,  is best defined indi- 
rectly as the inverse of  the matrix of  conjugate covectors, 
D',  which is defined to satisfy 

[ YD' ] 

D'B= / zD' [Bo B1 B2 
L liD' 

[_1 +, +, i:l 
where 

B = [Bo B1 B2 

B3] 

(4.4) 

[ Bo~ BI~ B2~ B3x ] 
B3 ] ~ Boy Bly B2u B3u 

Boz Blz B2z B3z 
(4.5) 

describes the positions of  all four detector comers (or 
beta-lights). The (direct-space) bound vectors in B use the 
nominal  crystal position as the origin. Equation (4.4) can, 
of  course, be satisfied exactly only if B describes a paral- 
lelogram, but the usual rectangular geometry assures this. 
Explicitly, 

+1 +1 - 1 ]  

- 1  +1 +1 [B0 B1 B2 B3] 

1 1 1 (4.6) 

D'= ZD' 
liD' 

[11 = 1 

where the overline denotes a generalized matrix inverse 
(Moore, 1920; Penrose, 1955; Appendix B); therefore 

[dtv d ,z  d ,o  ] 

= d '  =~-7 

I -11 +1 +1 - 1  1 
= [B0 B1 B2 B3 ] 1 - 1  +1 +1 

1 1 1 

I - l - l l l l  1 4 [B°  B1 B2 B3] +1 1 1 = -  +1 +1 1 . (4.7) 

- +1 1 

B2 

. . . . . . . .  d IO d 'z  ] 

B3 

Fig. 5. The various vectors to describe image or detector geometry. 
Three vectors, d, labelled O, Y, Z are used to define the origin of 
image or detector coordinates; d ~° = d ° defines the origin in the as- 
sumed detection plane and d ~Y and d ~z define the principal axes of 
the dimensionless image coordinates. This geometry provides a com- 
pletely general description of any plane detector, or any that can be 
represented adequately by an assumed plane of detection. This is usu- 
ally possible, even for spherical detectors, with compensating modi- 
fications elsewhere (e.g. in the spatial-distortion calculations). The 
vector d -J- is by definition always exactly perpendicular to the as- 
sumed plane of detection. The origin vector, d tO = d O, is often in 
very close alignment with dJ-; this is not necessarily the case, how- 
ever, and an illustrative alternative is shown in broken lines. The la- 
bels d ~°-, d TM and d ~g which apply equally to the normal position of 
the vectors shown with continuous lines and to the unusual illustra- 
tive position in broken lines are deliberately placed in an intermediate 
position to indicate this fact. 

----==:q ~__________~ 

Fig. 6. The covectors used to describe image or detector geometry, laid 
over the outline of a detector. Covectors act on vectors to produce a 
scalar result; they are thus naturally representable as contour planes. 
Here, each of the three covectors is represented by its null contour 
and by its (labelled) unit contour. If d ~° = d ° were to swing, YD ~ 
and ZD~ would too, so that their line of intersection remains always 
along dO; liD ~ would be invariant as long as d ° remained in the origi- 
nally defined plane of detection. Despite the analytical rigour and, in- 
deed, convenience of using covectors, it must be admitted that they are 
much harder to illustrate in more than two dimensions, and the draw- 
ings are less easy to interpret. Fortunately, in an invariant Cartesian- 
Euclidean space, it is always possible to use the conjugate vectors, at 
the expense of implicitly making use of some right-angle construc- 
tions. 
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This equation interpolates in a reasonable manner if the 
positions B0, B1, Bz, B3 are subject to small errors. Effi- 
cient calculations of the position that a photon will strike 
the detector using the quantities just defined are given in 
§5. The covectors in D' are illustrated in Fig. 6. Although 
they are associated with the unit square, which is dimen- 
sionless, the vectors in d'  are still dimensioned as length, 
just like those in d. 

The similarity of the structure of this latter system of 
equations to, say, the system 4.4 (which models the spa- 
tial distortions of an area detector) in Thomas (1989), is 
hardly accidental, since d 'Y, d ' z ,  d ' ° ,  are functionally 
similar to the terms #rio,  #~oi, #too respectively of the 
M transformation (which accommodates instabilities and 
variations in the imaging geometry). However, there is no 
counterpart to #/11, since the fixed F transformation be- 
ing bypassed has no curvature. 

Kahn (1986) has developed a modification of some 
of the equations of this section as first presented at the 
EEC Cooperative Workshop on Position-Sensitive Detec- 
tor Software in Paris (see Thomas, 1986c) which neatly 
incorporates the major spatial distortion of the gas cham- 
ber at LURE, but inevitably loses the generality. 

5. The position at which a photon strikes the detector 

To calculate the position that a diffracted photon strikes 
the detector, it is necessary only to demand that the direct- 
space representation of the scattered beam, O} (emanating 
from a position assumed to be at the centre of the crystal), 
be parallel to the reciprocal-space representation of the 
scattered beam, T): 

13} = (d v d z d ° ) z 

= ( d  ' v  d ' z  d ' ° )  = a T ) .  (5.1) 

The constant of proportionality, a,  has the dimensions of 
area and T) follows from (3.1), (3.4) and (3.9). The other 
symbols in this equation follow the notation in Goniom- 
etry and in Thomas (1989, 1990b) except that ®} here 
corresponds to Q* in the papers on the calibration of area 
detectors. The curly brace is used to denote a direct-space 
vector specifically bound to the crystal. The preferred use 
of ® in this context arises from the close relationship that 
the direct-space scattered beam bears to the 0 arm of a 
classical diffractometer. Taking advantage of the relation- 
ships Dd = 1 or D'd ~ = 1, one can rearrange these equa- 
tions as 

z = a D T ) = a  ZD T) 
liD 

or 

( Q Q I ; )  : a D ' T ) : a  L[zYD"]IID' T) (5.2, 

whence a can be eliminated and the solutions become 
simply the dimensionless ratios 

IDT) /D'T) 
Q / -  IIDT) or Q'I  = IID'T)' (5.3/) 

where I represents either Y or Z. It should be noted that 
whilst both numerator and denominator in these equa- 
tions individually result computationally in a single num- 
ber which would often be called (imprecisely) a scalar, 
this number is manifestly not metric invariant. It is here, 
perhaps most clearly, that the significance of metric varia- 
tions becomes most obvious: the usual convention is that 
reciprocal-space vectors are measured in inverse X-ray 

units, whilst the detector covectors are measured in 
inverse mm, which units differ by an immodest exper- 
imentally determined factor usually taken to be exactly 
1 0  7 . In the strictest definitions of modern geometry, only 
numbers which are also strictly metric invariant would be 
called scalars, but we lack the language (or indeed the pa- 
tience) to make the distinction more generally. However, 
it is to be hoped that the deliberate difference in notations 
for vectors in reciprocal space and in direct space will be 
found helpful in maintaining this distinction. It might also 
be noted that this formula for Q is identical to the per- 
spective projection of T) onto the plane of the detector, 
taking the crystal as the eye-point. The formulae (5.3) for 
QI are called the gamma-bypass transformation, because 
they circumvent the F transformation, which is part of 
the cascaded description of the spatial distortions of an 
area detector. [Cf. equations (2.1) and (2.2) in Thomas 
( 1989).] They are used during high-speed calculations be- 
cause overall they involve less computation. 

Equivalent equations are available using the detector or 
image vectors rather than the covectors, by expanding D 
or D' in full as the matrices inverse to d or d / and can- 
celling the determinants: 

ZdA °d T) ZdtA °d'  T) 
QY - YdAZd T) or Q'Y = Vdt A Zd' T) 

and 
°dA Vd T) 

Q z  - YdAZ d T) 
or 

(5.4y) 

°d'A Yd' T) 
Qtz  = YdtAZd' T)" 

(5.4z) 

These coordinates are thinly disguised ratios of triple 
scalar products. 

The derivatives of Q' are clearly useful for refinement 
purposes and are best expressed in terms of the defining 
covectors in D'. With respect to T) we have directly after 
a trivial rearrangement of the 'scalar'  terms to emphasize 
the necessarily covectorqike properties: 

(TD,[I XD'_ (TD ,~ IID' 
VT) Qt l  = (TD'II IIDtT) ' (5.51) 

which is easily related to both R) and S) by the chain rule 
using VR)T ) = ~7T)R ) = 1 and Vs)T ) = VT)S ) = - 1 .  It 
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would, however, be inconceivable that, on a machine of 
the precision and accuracy of a FAST system, the defin- 
ing covectors within D' should be refined from diffraction 
data,* but on less accurate machines, or where there is a 
suspicion that a misalignment has been induced, the fol- 
lowing derivatives with respect to the covectors might be 
found useful: 

T) 
~ D , Q ' z -  IID'T> (5.6z) 

and 

T)<TD 'z 
ZD, Q'I = (TD'II IID'T) (5.7i) 

The putative small shifts in the covectors by which these 
latter two equations have been differentiated naturally 
premultiply rather than postmultiply the derivative forms. 

6. The geometry of the rotation method 
and the diffraction angle 

A contracted solution to the generalized equation of the 
Arndt-Wonacott diffraction angle was given in Goniom- 
etry, and the treatment here both formalizes the earlier ex- 
position and extends it, by giving the explicit calculations 

of the terms p, y and R>.~f First, three basis covectors with 
symmetrical properties related to the rotation axis and to 
the incident beam are defined (see Fig. 7): 

(A = ($9J_9, (6.1) 

(B = ($919 , (6.2) 

(9  - 1 9  - 9 .  (6.3) 

The notation here was described fully in Goniometry, but 
recapitulating, the sixa, ]9, here represents specific orbital 
planes of points turning on the ~b axis and (9  is a covector 
representation of these. Computationally, (9  would al- 
most invariably be represented by a row vector of direc- 
tion cosines aligned along the ~b axis. 

The covectors in the last three equations are mutually 
orthogonal; (A and (B necessarily have the same modu- 
lus, but the modulus of (9  need not be the same. (Indeed, 

* Notwithstanding this, there is a risk when running a FAST system 
with a software package designed for other machines that a thinly dis- 
guised operation equivalent to this will, in fact, be performed, with a 
deleterious effect, especially on determinations of the unit cell and also, 
particularly when profile analysis is used, on the measured intensities. 
Regrettably, there is a tendency for any problems to be blamed on the 
detector (which perforfns far better than is commonly realized) rather 
than on the mismatched operation of inappropriate software. 
t Some readers have objected that y would have been better as a Greek 
letter in the present context, whilst acknowledging the utility of main- 
taining consistency with Wonacott's notation. The author would have 
preferred to have used a lower-case upsilon, but this is never used in 
mathematical formulae for obvious reasons. Perhaps an acceptable res- 
olution would be to call the symbol upsilon anyway, though it be translit- 
erated of necessity into the Roman alphabet. 

it is more than likely that <9 would even be dimensioned 
differently.) Thus the unrotated reciprocal-lattice vector 
can be resolved into the three components: 

(i) = (B X>= ($9]_9X) , (6.4) 
<9 <gx> 

which have distinctly different behaviours with respect to 
the angle of rotation, as expounded in Goniometry. For 
heuristic purposes only, this component representation is 
now rotated through the unknown ~ into a diffracting po- 
sition using an archetypical 3 x 3 rotation matrix, giving 
the new component representation 

( i )  ( c o s ~  sin~p ! )  ( i )  
= - sin cos ~ . (6.5) 

0 0 

Direct expansion using the definitions of r/and e above 
shows that p can be reduced to an unknown symmetric 
form, (S 9_[9R), isomorphic to that of e, which can be seen 
by inspection of (3.6) to be a calculable form independent 
of the choice of diffraction angle [cf. equation (11.12) in 
Goniometry]: 

p = E cos ~, + r/sin ~b 

= ($919X) cos ~h + ($9]-9X) sin 

= <s gl x): <sglg x): (SglgR) 

_ (XX> ($919X). (6.6) 
2 

Indeed, it is this right-most calculable form that is used 
in practical calculations. Similarly, by direct expansion, 
y can be reduced to an unknown skew-symmetric form, 
(SgJgR),  isomorphic to that of 7/, which can be seen from 
the necessary relation y2 + p2 = r/2 + e2 ( -  ~2) deduced 
from (6.5) to be another form calculable without knowl- 

s> 

A> 

Fig. 7. The covectors used to analyse diffraction-condition geometry are 
drawn here for convenience in conjugate vector representation. The 
salient features are that (A is a linear combination of ( 9  and (S or- 
thogonal to (ffJ and that (B is orthogonal to the other three. 
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edge of the diffraction angle [cf equation (11.11 ) in Gon- 
iometry]: 

y = r/cos ¢ - c s i n ¢  

= (StI,j-tI, X) cos "¢, - (StI'itI'X) sin ¢ 

S " : ( V¢fftX> : (SV~,R> : (StI,ftI, R> 

= .+-472 + ~2 _ p2. (6.7) 

However, y clearly does depend on the twofold choice of 
diffracting position. Indeed, it is the choice of sign here 
that defines which diffracting position we are consider- 
ing, since this calculable form is the one actually used 
in practical calculations. Then the rotationally invariant 
~ and the two (now calculated) forms for p and y can be 
used to give directly the position of the reciprocal-lattice 
vector in its diffracting position: 

(<A) 1(i ) R) = (B . (6.8) 

It will be noted that although ~, and trigonometric func- 
tions appear in this derivation, they do not appear in the 
computations yielding the final result. The only expensive 
calculation is that of the square root in (6.7). 

The matrix inversion in (6.8) is usually just a formal- 
ity, because the matrix being inverted is normally con- 
stant. Furthermore, in high-speed programs, such as the 
GENREF algorithm [which remains the fastest known 
method for prediction in the rotation method (Thomas, 
1981, 1982a,b, 1985)], the choice of axes is such that 
the matrix is not only diagonal, and hence trivially invert- 
ible, but is also isotropic, so that it can appear as a simple 
scalar multiplier. If, further, (2.4) is imposed, this scalar 
becomes the unit multiplier and vanishes completely from 
computer code. 

7. The generalized Lorentz factor 

The Lorentz factor proper is a dimensionless quantity 
(see Buerger, 1960) usually defined in terms of the Bragg 
angle, 0, which, however, finds no application in the the- 
ory of area diffractometry. Milch & Minor (1974) gave 
a simpler vectorial formula having unspecified dimen- 
sions of area or possibly of volume and agreeing with 
Buerger's formula only when dimensionless reciprocal- 
lattice units are used. Many other formulae are also used, 
frequently mixing what are intrinsically differently di- 
mensioned quantities, crudely defining them as dimen- 
sionless from the outset [e.g. Lipson's (1972b) formula: 
L - 1  = (sin 2 2 0 -  ff2)1/2]. The use of radicals and trigono- 
metric functions is no longer considered to be desirable 
and can fortunately be avoided. The newer virtualized 
vectorial formulae also offer considerable improvements 
in the efficiency with which variable experimental param- 
eters may be refined. Here we follow the style of the ba- 
sically vectorial formula of Milch & Minor, and the man- 
ner of Dr Robert Diamond (unpublished work quoted in 

Thomas, 1982a), but allowing both signs. The preferred 
definition is that of the signed inverse Lorentz factor given 
in Goniometry as equation (11.11) (except the change of 
axis to ~): 

L -1 -= T = (SVcR)= (S,:I,J-69R) : (R4p]_6/,S). (7.1) 

This is dimensioned as reciprocal area and is linear in 
both vector and covector arguments. For practical com- 
putations, this equation expands into (0 oz 
T ~,, ( Sx Sy Sz ) ~I'z 0 -~I'x Ry ; 

-~by ~b~: 0 R~  (ox) 
'-~ ~y . (7.2) 

We can define the conventional signed dimensionless 

form as £ - a  = ( S ~ R )  where the hat implies (as usual) 
that unity is in some way implicated in the formula. In 
this case, it implies that the normalization (SS) = 1 of 
(2.4) has been imposed. Agreement with, say, Buerger's 
formula is then achieved by always taking the sign as pos- 
itive, but no advantage accrues from this extra (and lim- 
iting) complication. The reciprocal-lattice point must be 
in its diffracting position, R) = ~X) ,  in this formula, 
but this need not involve any extra computation, since 
this quantity appears naturally in the calculation of the 
diffraction geometry given in §6. A definitive definition 
of the Lorentz factor seems to be lacking in the litera- 
ture, but (7.1) satisfies the consensus that it is inversely 
proportional to the rate at which a point R) in the recip- 
rocal lattice penetrates the Ewald sphere with respect to 
changes in ¢, described here by the form 27~R). This re- 
duces to the calculable form ,:I,_[4/,R) using the rotationally 
skew-symmetric operator defined in Goniometry. The bi- 
linear form, T, is analytically superior to the conventional 
Lorentz factor (which has unattractive properties near to 
the plane containing both the incident X-ray beam and the 
instantaneous rotation axis) on account of being always 
well behaved. 

The first derivatives of the Lorentz factor are useful for 
establishing the dependence of collected data and other 
formulae on variations or uncertainties in the controlling 
experimental parameters, most notably S)" then R), but 

t~ much less so. It helps to define first the simpler deriva- 
tives of the signed dimensioned factor, T. The derivatives 
with respect to S) and R) are covector-like in recipro- 
cal space, and those with respect to (S and (R are con- 
sequently vector-like in reciprocal space: 

%) T = (R~I~ ,: > ~ s  T = ,I,.]',I,R>, (7.3) 

VR} T = (Sff).]'4# ~ ~r~ T = 4p]_~I,S). (7.4) 

The two most important Jacobians of L then follow di- 
rectly and are 

Vs)L = - L  2 Vs)T = (R~f,:I) _ (R~/,f~ 
(S~f~R)2 Tz (7.5) 
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and 

VR>L = _L2 VR>T = <S@lff (S(bl~ 
<S~j_I,R)2 - T2 , (7.6) 

with conjugate forms V<sL and V<RL following by direct 

transposition, as in (7.3) and (7.4). 
The (Hessian) second derivatives of the Lorentz factor 

are also useful in data analysis routines, particularly for 
establishing the perturbations in the results caused by the 
curvature of the factor within the image of a single diffrac- 
tion spot. The diagonal terms are predictably symmetric 
and follow directly from the Jacobian terms: 

q:;]_cSR> 2 <R(I:,.]-~ @[~/,R> 2 <R(b_[-~ 
Vs> <sL = <S 6/,.]_6/,R> 3 = T3 , (7.7) 

,:I,.]-¢,S> 2 <S~]_¢~ ,:I,.]-(I,S> 2 <S~]¢, 
VR) <RL = <$6~.]_ R)3 = T3 (7.8) 

The more complicated off-diagonal cross terms are anti- 
symmetric, being 

Vs><RL= (S,I,_[-~R) 3 + (S(b.]-q:,R)e 

- -  . . 1 _ _ _  

T 3 T 2' 

,:I:;]_,:I,R) 2 (S~]_,I:, ~]_,:b 
¢==> VR><S L= (S~j-cI, R>3 + (S~j-@R>2 

• I R> 2 
= + - -  (7.9) 

T 3 T 2" 

The third and higher derivatives of the Lorentz factor do 
not appear to be of much utility, and are not quoted here. 

The Lorentz factor also has non-trivial derivatives with 
respect to changes in the direction of the instantaneous 
rotation axis, but no area detector is currently used in a 
way which necessitates their use. 

For completeness, the second derivatives of T are 

Vs)<s T = 0, (7.10) 

VR) <RT = 0 (7.11 ) 

and 

VS>{RT = ,I,]_~ +--> VR>{sT = ~]-~. (7.12) 

Higher derivatives vanish. The derivatives for y are simi- 
lar and are obtained by replacement of the terms in ~ by 

the corresponding ones in ~. 

8. The representation of beam divergence and 
dispersion in first-order approximation: I 

No X-ray beam is perfect, and in practice it usually makes 
a significant contribution to the observed angular widths 
of diffraction spots (Arndt & Thomas, 1985b). It is sim- 
plest to consider first the model most appropriate for 

use with a synchrotron source, where the distribution of 
wave vectors is usually unimodal. If the monochroma- 
tor is not in the achromatic Guinier position (Guinier & 
S6billeau, 1952), there will be a correlation between the 
angle of each component and its mean wavelength. This 
need not cause any analytical inconvenience if the wave- 
vector distribution is modelled as a triaxial Gaussian [see 
Thomas, 1982a, §2.2.3, pp. (2.4)-(2.5)], which is equiv- 
alent to describing the variance fully. This is a good first- 
order approximation and we have every reason to believe 
that it is adequate for the task of predicting the angu- 
lar widths of reflexions. A second-rank tensor quantity, 
S, with the gcomctrical structure of a bicovector (which 
means that it can act upon two vectors to produce a scalar) 
is used to describe the variance-covariance: 

s = [s><s - ( s .1 )  

This follows the normal pattern of being the mean of the 
squares less the square of the mean. It is represented com- 
putationally as a real symmetric positive-definite 
3 × 3 matrix. The standard deviation of S) is not defined 
because the square root of a quantity with the geometri- 
cal structure of a bicovector is not defined. Strictly, S is a 
function of position within the beam, but to a first approx- 
imation the beam is assumed to be uniform throughout 
the crystal, whence S becomes constant except for possi- 
ble temporal variations. Shifts of the incident-beam wave 
vector are related to shifts in the diffraction angle by the 
Jacobian 

0¢ - ( R  -<R 
%> ¢ - 0S) (R~I;I(bS-------- ~ = --T--' (8.2) 

which is derived using the implicit function theorem [as 
equation (12.6)] in Goniometry. Double application of 
this equation to (8.1) yields directly the formula for the 
variance of the diffraction angle attributable to the vari- 
ance of the incident-beam wave-vector distribution: 

var(¢) = ((A¢) z) = Vs)¢ [S)(S - g)(g] ~ s ¢  

<RSR) <RSR) 

<Rff]_ffS) < S,:I,J-ff R) T a 
(8.3) 

The variance of the diffraction angle is a scalar, so the 
standard deviation can also be defined by taking the 
square root. If S is approximated as A I A ,  (8.3) reduces 
to the form of equation (7.41) used by Wonacott (1977), 
which has ~ in the denominator instead of y (which is the 
same as T for the rotation method):* 

(R AIA R) A211d*II2 
var(¢) - var(~b)= y2 y2 

:=> sd(¢)=--sd(z/J)= - ~ 1 .  (8.4) 

* Wonacott's text reads somewhat ambiguously: if it is assumed that 
when he is referring to the distance from the axis he means as measured 
in the film plane, then y is appropriate; otherwise, if he means in recip- 
rocal space, then ( is more appropriate. 



D. J. T H O M A S  147 

c) 
GIG 
dbackstop 
d .2 

A 

0 
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P 
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I I  
Q I I I I  

FsJ, Ls] 
sis 
S 
8 

III 
~backstop 
t X - D  

t x - s  
TiT 
v,  
zuI 

Table 5. Symbol table for §8 et seq. 

a vector pointing along the backstop support 
operator resolving its argument along a line normal to both the beam and the backstop support 
the diameter of the backstop cup 
= IId'll 2 -- (RR) = (XX> 

the Kronecker ~5 ( 1 if i = j ,  0 otherwise) 
a small number used by Wonacott (1977) for reflecting ranges 
the direction of electric polarization, with right- and left-acting forms IE and E I 
a reciprocal-space vector denoting the ith component of the X-ray doublet 
the Bragg angle 
one of the axes in the pixel grid, either ¥ or Z 
an additive term to accommodate the extra spreading from the point-spread function of the detector 
a small-angle vector describing amosaic misoriention 
a rotation operator describing mosaic misorientation, and its inverse 
the mosaicity distribution tensor 
the conventional polarization factor 
a point within the pixel grid, (Py,  PZ) [distinct from the calculated position, Q '" ' ]  
the power in a beam 
the beam polarization tensor 
the (distorted) position of a spot within the pixei grid, ( Q ' " ' ¥ ,  Q ' " ' z )  = P 
the skew-symmetric operator for which [SJR) = S)AR), V R), and its conjugate 
an operator which projects its argument onto the plane normal to the incident beam 
the beam wave-vector distribution tensor 
a parameter used to describe indirectly the apparent thickness of a backstop support 
(Shah) a second-rank (bicovector-like) tensor form describing angular diffraction widths 
the crystal-to-backstop distance 
the crystal-to-detector distance 
the crystal-to-apparent-source distance 
an operator which projects its argument onto the plane normal to the scattered beam 
the size of the crystal in the direction of the detector-plane axis, I 
the width of a window in the direction of the detector-plane axis, I 
an operator projecting its argument onto the plane of the beam and of the beamstop support 

Wonacott 's  formula was designed to accommodate  both 
isotropic mosaicity and isotropic beam divergence in the 
single symbol A,  though as will become apparent in the 
next two sections, anisotropic distributions lead to a dif- 
ferent law of combination. 

Table  5 gives a list o f  symbols  for  this a n d  the 
fo l lowing sect ions.  

9. The representation of beam divergence and 
dispersion in first-order approximation: II 

A conventional laboratory source using an X-ray tube dif- 
fers from a synchrotron source in that the wavelength dis- 
tribution is bimodal. Each component  of  the doublet also 
has a small wavelength spread which need not be ignored 
even though it makes but a small contribution to the over- 
all width because it can easily be included with no in- 
crease in the analytic complexity, providing that the same 
description as used in the last section is maintained. 

The doublet splitting itself is most naturally modelled 
by offsetting each of  the centroids of  the two assumed 
Gaussian distributions by a small vector, ei), aligned with 
the mean direction of  the incident beam, and bound to the 

centroid of the complete distribution. It is less appropri- 
ate to use a standard deviation to describe the diffract- 
ing width in this case because of the asymmetry,  so we 
use the notations A 1 ¢  and A 2 ¢  to denote the shifts in the 
two directions. More precisely, A 1 ¢  is used to denote the 
angular deviation from the mean diffracting position that 
makes the diffraction plane tangential to the ellipsoid de- 
scribing the c~1 component  of  the doublet, and similarly 
for A 2 ¢  and the a2 component:  

- (Re~}  - - ( R e ~ )  (9.1) 
A~¢= Vs>¢( >- (R¢I¢S > T , 

where i is either 1 or 2, denoting the c~ or the a2 compo- 
nent of  the doublet respectively. This model is thus an ex- 
tension of that given by Thomas [ 1982a, §2.2.4, pp. (2 .5)-  
(2.6)], where the asymmetry  of the doublet and the differ- 
ing dispersions of  the two components  were ignored. 

The two components of the doublet do not have the 
same intensity, which means that the centroid of  the dis- 
tribution is not symmetrical ly disposed; this can be mod- 
elled adequately by adjusting the two vectors ei so that e2 
is twice as long as e~: 

(2)  = _ 2 ( 1 > .  (9.2) 



148 M O D E R N  E Q U A T I O N S  OF D I F F R A C T O M E T R Y  

With a simply collimated beam orone with a well adjusted 
monochromator, the vectors ei will be accurately parallel 
to S) and can be represented computationally in reciprocal 
space by the two columns: 

(i) E x 
i ~ i )  ~., .¢~y . 

i 
E z 

(9.3) 

the variance-covariance matrix in the small-angle vector 
space is denoted by a second-rank tensor, M. This must 
rotate with the crystal, so we transform it into the labora- 
tory frame in the normal way, by double application of the 
rotation operator, ~ ,  which describes the crystal rotation, 
as in R) = ~X) ,  for example, to give the form 

[ ~ ) < ~ -  ~)<~] = ~tM~t. (10.1) 

10. The representation of crystal mosaicity 
in first-order approximation 

Mosaicity in crystals of biological macromolecules is still 
not generally understood particularly well. Careful obser- 
vations with area-detector diffractometers show quite 
conclusively that some crystals, particularly native ones, 
are very well aligned at the microscopic level, but may 
exhibit long-range orientational disturbances so that the 
Bragg planes appear wavy on the macroscopic scale 
(Arndt & Thomas, 1985b). It is also clear that many crys- 
tallographers are led falsely to interpret the effects of 
poor incident-beam collimation as mosaicity (Arndt & 
Thomas, 1985b). This is understandable when using film 
or crude diffractometer methods of data collection, but an 
analysis of the full three-dimensional profiles of diffrac- 
tion spots enables the two sources of broadening to be dis- 
criminated separately (Thomas, 1992a). However, there is 
also a considerable amount of evidence that other crystals, 
particularly heavy-atom derivatives, do display marked 
disordering on a microscopic scale; and, indeed, some 
crystals have a very short lifetime after soaking, presum- 
ably succumbing to the reduction in their stability, and 
disordering progressively. 

Many crystals of biological macromolecules display a 
marked anisotropy of mosaicity and this causes a large 
variation in the diffracting widths of reflexions. This must 
be calculated properly, particularly when using dynamic 
windowing methods of data collection (Thomas, 1982a,b, 
1985, 1986a,d, 1987; Arndt & Thomas, 1985a). 

We can represent mosaicity as a probability density dis- 
tribution expressed firstly as a function of all possible ro- 
tations and secondly also as a function of position within 
the crystal. An accurate and full description is therefore 
very complicated and leads us into the realms of pro- 
file analysis, which will be dealt with in a later paper 
(Thomas, 1992b). Mosaicity is in any case much more 
complicated than beam structure, and to first-order ap- 
proximation we take the crystal to be so small and suf- 
ficiently homogeneous that we can neglect variations in 
its mosaic structure throughout its bulk, though this lat- 
ter functionality will also be dealt with properly in a later 
paper. 

For most purposes, a first-order description based on 
the normal or Gaussian distribution is the most useful and 
the mosaic misorientations, A;/, can be modelled by means 
of small-angle vectors, e.g. fz [see Goniometry, equation 
(9.2)]. By direct analogy with the description of the beam, 

This is represented computationally by a real symmetric 
positive-definite 3 × 3 matrix. Ordinarily, we would apply 
the mosaic misorientation operator, .AI, to the reciprocal- 
lattice vector, R), but here it is better to apply its inverse, 

A'I, to the negated representation of the incident-beam 
wave vector, S), so that the contribution to the diffract- 
ing width of a spot caused by mosaicity can be combined 
with that caused by the imperfections of the beam. Writ- 

ing S) = A"IS0), the derivative of S) with respect to the 

small-angle vector, fi) (defining ~1 and ~'1) reduces to the 
very convenient skew-symmetric deponent form 

0 - S .  Sy ) 
0 - S .  FsJ ~ 

S~ 0 

- s= o s .  , 

S.~ - S,r 0 

(10.2) 

whose action is familiar enough: it is equivalent to taking 
a vector cross product with S). Although it has not been 
introduced before, the symbol ['J is not really a new no- 
tation, but just a consistent development of that already 
defined for rotations in Goniometrv. Its justification is as 
follows: a right rotation is represented by the combined 
presence of the two putative half-operators [ and J, and 
the operator is linear with respect to the named quantity, 
so its name must appear just once; thus [--J is an obvious 
and consistent choice. As a reminder, the derivation of the 
rotational operator o J-- included the idea that its invariance 
under changes of metric could be asserted by including 
the named quantity twice, once in a covariant and once in 
a cancelling contravariant representation. Like .j-o, [.J is 
inverted correctly by a left to right flip on the page, be- 
coming L.]; in both cases this is seen in computational 
representations to be equivalent to a change of sign. By 
application of the derivative in (10.2) twice to (10.1), as 
is usual when transforming a symmetric second-rank ten- 
sor, ~ M ~  is transformed from small-angle vector space 
to wave-vector space. This can be written as 

V~)S) [ / 2 ) ( / ~ - ~ ) ( ~  1 ~r , (S = IS]~M~[S1, (10.3) 

and it therefore follows, multiplying twice by Vs/0 [by 
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direct analogy with (8.3)], that the variance of the diffrac- 
tion angle attributable to mosaicity is 

var(O) - ((AO) 2) = (R [SJ~'M~'[S] R) 
(R~]~S)  (S ffj-~R) 

(R [SJ~M~[S] R) 
= (10.4) 

T 2 

Again, the variance of the diffraction angle as defined here 
is a scalar, so the standard deviation can also be defined. 
A slight expansion of the fuller term in (10.4) shows reas- 

suringly that ~ serves only to transform quantities from 
the moving reference frame back to the stationary one as 
the crystal rotates, using the normal rule of one occurrence 
for a first-rank tensor (X)) and two for a second-rank (M): 

{X¢' FSJ ¢ 'M¢ '  LS] ~ ,x  ) 

(x¢ ,  ~ l ~ s )  (s,8-~ ~ , x )  

s / and ~ are fixed relative to the laboratory, whilst X / 
and M are tied to the rotating crystal. Thus defined, all of 
the groups displayed above are referred to the laboratory 
frame. 

11. Combining the contributions to the 
angular width of diffraction spots 

The first-order (Gaussian) approximations to the spread- 
ing caused by the mosaicity and by the spread of each 
spectral component of the beam add linearly in their rep-, 
resentation as var iance-covariance tensors; indeed, it is 
precisely for this reason that they were both expressed in 
the same space as R), so that 

var(0) = ((A,;b) 2) = ( R I I I R )  _ (RILIR) 
(Rff[~S) (S~J-ffR) T 2 , 

( l l . l )  
where 

I_U : S + [SJ~M~[S]. (11.2) 

The physical quantity represented by the symbol ' I i I '  has 
always been called ' d igamma '  in computer programs re- 
gardless of  the names of the various algebraic symbols 
that have been used for it. In fact, the formula given here 
turns out to be an incomplete expression of an extremely 
important quantity, also written 'II1' ,  which dominates 
the analysis of the three-dimensional profiles of diffrac- 
tion spots, but this will be discussed in the later papers 
(Thomas, 1992a,b). The missing term does not affect the 
equations of this paper. There is no doubt that M and S 
are genuine tensor properties but the precise physical sta- 
tus of  I l l  is slightly unclear, because it is an obviously 
contrived quantity which varies with the relative orienta- 
tion of the crystal and the diffractometer: nonetheless, it 
is usually thought of as an 'honorary '  second-rank tensor, 
on the basis of  its transformational properties under rota- 
tion and the characteristic way in which it enters (11.1). 

Thus the square root of ( 11.1 ), 

sd(O) V'(R LLI R) v/{R IiI  R) 
= = (11.3) 

(S~.]-~R) Y ' 

is the simplest known equation which adequately repre- 
sents all the major trends in diffraction widths displayed 
by small crystals  with an overtly triaxial mosaicity dis- 
tribution il luminated by synchrotron radiation emanating 
from a monochromator  in a general ( i .e .  non-Guinier) po- 
sition. 

For a conventional source, the doublet contribution 
must also be included. The contributions to the angular 
widths of spots arising from the doublet splitting and from 
the dispersion and divergence in normal approximation 
add  l inear ly ,  as can be seen f rom Fig. 8, so we sum the 
square root of ( 11.1 ) and (9.1) to give the final form for a 
conventional source: 

- ( R  ei) ® X / ~ l l l i  R) 
/Xi0 = 

(R,f[~S) 

-(R ei) • v/(R llli R) 
T (11.4) 

in which the special addition sign indicates that the sign 
of the second (radical) term necessarily follows the net 
sign of the first. The notation I i i i  allows the possibility 
of  having the two different ellipsoidal descriptions, S,, 

d) 

Fig. 8. A model of the doublet structure. This is a "close-up view" of the 
diffraction plane sweeping through the bimodal incident X-ray wave- 
vector distribution (i.e. doublet) for a conventional laboratory source. 
The small circle marks the centroid of the distribution, which is the 
position used generally for all first-order calculations of the diffrac- 
tion geometry. Each ellipsoidal surface represents a suitably low con- 
tour in a Gaussian approximation to each component of the doublet. 
The diagram shows why the contribution from the doublet splitting 
and the contributions from singlet dispersion and beam divergence 
are summed linearly. With simple collimating optics the ellipsoids 
would normally be expected to be principally aligned as shown (i.e. 
one principal axis of each ellipsoid is parallel to the mean beam direc- 
tion). With a monochromator not in the Guinier position, as can occur 
typically on a synchrotron source (where there is also no doublet split- 
ting), the ellipsoidal orientation will not be in any way special. This 
figure is adapted from Fig. 3 in Thomas (1982a). 
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one for each component of the alpha doublet, by obvious 
extension of (11.2). These equations occur in §§2.2.3-5 
of Thomas (1982a) in an older style of notation, and are 
known to fit experimental data as adjudged by the perfor- 
mance of the data-reduction routines run at Cambridge 
and elsewhere (Renetseder, Dijkstra, Kalk, Verpoorte & 
Drenth, 1986). This final model is thus an extension of 
that given by Thomas [1982e, §2.2.5, pp. (2.6)-(2.7)], 
which has been used for many years in the well tested 
G E N R E F  algorithm for predicting diffraction spots dy- 
namically at the highest possible speed. It is thought to be 
adequate for all foreseeable applications. The two distri- 
butions $1 and $2 should differ slightly because the more 
energetic component of the doublet has a slightly larger 
spread of energy, but the difference is so small that we 
can continue safely to ignore it. 

III need not be calculated for each diffraction spot if 
they are handled in groups of similar diffraction angle, ~, 
and in practice we normally compute it about once every 
degree of crystal rotation during continuous dynamic data 
collection, or once per frame or per film using the camera- 
type of rotation method. 

12. A n  a c c u r a t e  t e n s o r i a l  d e s c r i p t i o n  o f  
b e a m  p o l a r i z a t i o n  

The polarization intensity structure of an X-ray beam can 
be represented by a deponent second-rank tensor, say lrI, 
with the computational structure of a real-symmetric pos- 
itive 3 × 3 matrix (Thomas, 1986b): 

n ~  crj crg or; . (12.1) 

This definition relies on the relative power radiated into a 
beam with its electric polarization along E being propor- 
tional to 

w = IEIIEI, (12.2) 

and on the existence of a satisfactory rule for transforming 
the tensor when a beam is reflected. ]E and E] here satisfy 
lEE] = 1 and take the r61es of unit vectors or pointers. 
The purpose of setting lEE[ = 1 is not that the value 1 
has any particular significance but rather that lacking any 
relevance the quantities are thus represented in the most 
self-effacing way. The real significance of a unit vector, 
in any case, is not so much that its length is 1 but that no 
meaning whatever attaches to its length, which is why the 
term 'pointer' is preferred and why i~ is defined so simply 
as just a 'direction'. 

Geometrically, at least locally, a beam which has been 
rotated cannot be distinguished from one which has been 
reflected, so by analogy with the normal rotational trans- 
formation law for a second-rank tensor, the transforma- 
tion law for this tensor during a single reflexion can be 
defined as 

II '  = TJ_T II TiT, (12.3) 

where the projective operator, 

,--, - l m  1 - m 2 -r~m • 
TiT = 1 - (TT)J - I n  - r a n  1 - n 2 

m - , (12 .4)  
IIT)II 

is completely equivalent in function and form to the ro- 
tationally symmetric operator, .J...* The possibly unex- 
pected absence of a specific representation of the direc- 
tion of motion of the incident photon in this equation is 
not an oversight, but a useful simplification; it is possi- 
ble because II must necessarily have a null eigenvector 
along that direction, so the information is included auto- 
matically. Indeed, it is this which explains the use of TiT 
above: it is uniquely an idempotent operator which has a 
null eigenvector along the direction of motion of the scat- 
tered beam and of itself induces no rotation. [Consider 
(3.5), stripping out the .I. term which now corresponds 
to the direction of motion of the photon, and also setting 
the angle of rotation to zero: the .j-. term vanishes, leaving 
only the "_L" term.] 

From this it follows that the value of II for an unpolar- 
ized incident beam (along S)) is 

n = SiSlSiS = s i s  (12.5) 

which is derived by modelling the source as a randomly 
vibrating charge, so that it radiates unpolarized radia- 
tion isotropically in all directions, with a corresponding 
isotropic polarization tensor represented adequately by 1. 
The power, w, in a direct or in a scattered beam is then 
given by the correspondence product of II or of II' with 
the identity operator. The correspondence product is the 
same as any well defined inner product, so its action can 
be demonstrated easily in matrix notation. The formula is 
then seen to correspond to taking the trace of the square 
symmetric matrix representing II or 1"I': 

w l , , I I  ^J J = ~ 6~ H i (12.6) 

or 

w I 1•  '~ (12.6') - - ~  - - ~  • 

It is not difficult to show that this is identical to 

= T_[_T • II, (12.7) 

which involves fewer numerical computations overall, 
since II' need not be evaluated. 

The conventional polarization factor, p [ in ter  al ia:  

Buerger, 1960, ch. 3, equation (14); Lipson, 1972a], is 
given by the ratio of w '  to w: 

w'  T I T a n  
(12.8) 

w 1"1I  

* See equations (3.5) and (5.8) in Goniometry. The quadruple occur- 
rence of the argument referred to in § 3 of Goniometrv is displayed 
clearly here in equation (12.4). 
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Computational efficiency can be much improved by defin- 
ing a normalized polarization tensor, 

f i _  II (12.9) 
1,,11' 

whence 

p = TIT•f t .  (12.10) 

It will be noticed that, yet again, it has been possible 
to avoid trigonometric functions in a formula which has 
hitherto invariably used them. 

The computational representation of this calculation 
can be demonstrated by considering, for example, how 
it appears using dimensionless reciprocal-lattice units for 
a perfectly aligned four-circle diffractometer, when it re- 
duces to the well known conventional formula. First the 
incident beam is specified as pointing into the X-ray 
source along the laboratory z axis: (1) 

s ) ~  0 , 

0 

(12.11) 

as is conventional for a CAD-4 using the manufacturer's 
specification of the laboratory frame. For a simple colli- 
mator, it is then a safe assumption that half of the total 
power in the beam is polarized along y and half along z: 

0 0 0 )  
1 0 . 

f i ~  0 ~ 1 
0 0 

(12.12) 

On a conventional four-circle diffractometer using equa- 
torial geometry, the scattered beam would be represented 
in terms of the Bragg angle, 0, which translates into the 
vectorial component form as 

- cos 20 ) 
T) ,~ ±s in20  , 

0 
(12.13) 

though the trigonometric functions would never be eval- 
uated with an area detector; the equation is purely illus- 
trative. Direct expansion of the formula for TiT yields 

1 - c o s  220 T sin 20 cos 20 0 \  
TiT ~ T cos 20 sin 20 I - sin 2 20 0 ) , 

0 0 I 

(12.14) 

though in this particular case it might have been noted 
that the evaluation of the first column and of t.he first row 
was unnecessary because of the structure of II. Equation 

(12.10) now gives directly 

p = TIT,,fi  
1 - c o s  220 zF sin 20 cos 20 0 \  

,~ :~ cos 20 sin 20 1 - sin 2 20 0 ) 
0 0 1 (oo  

• 0 
0 0 

sin 2 20 1 + cos 2 20 
= l (12.15) 

2 2 

which is identical to the conventional formula for the 
same geometry. Equation (12.10) is, however, more ef- 
ficiently computable, lacking the cosine function. 

13. Calculation of  the window to cover a 
diffraction spot 

Most methods of data collection or of data reduction re- 
quire a rectangular window of pixels covering the diffrac- 
tion spot to be selected for further analysis as a means of 
reducing the total number of data and of excluding other 
orders of diffraction. Although an accurate calculation of 
the projected shape of diffraction spots on the surface of 
the detector is available [and will be presented in a se- 
quel to this paper: Thomas (1992a)], it is not necessary 
to invoke such an elaborate analysis just to determine the 
size of a window large enough to record a diffraction spot 
withoutclipping it. The calculation given here is that used 
within the software package written for the FAST sys- 
tem at Cambridge. In this case, an old-fashioned style of 
formula is still used, without the advantages of the more 
modern vectorial or coordinate-free styles, though com- 
putationally expensive explicit trigonometric calculations 
are still avoided. Some accuracy is sacrificed, but in such 
a way that the approximations tend to increase the size of 
the window. The calculation assumes both a simply colli- 
mated X-ray beam emahating from a point source and that 
the origin of the detector coordinates, Q = 0, is at the point 
on the detector nearest to the crystal so that d -L = d ° .  The 
width, we, of a window in the direction of the detector- 
plane axis, I (as can be deduced directly from the diagram 
in Fig. 9) is 

tX_D 2 

tX-D tX-S 
(13.1I) 

where VI is the extremal size of the crystal measured in 
the direction of the detector-plane axis, I. The first frac- 
tion accounts for the lengthening of the spot at inclined 
incidence and is equal to the secant of the projected angle 
of incidence providing that the detection surface is planar. 
The second fraction accounts for the relative magnifica- 
tion of the spot, assuming that the X-rays radiate along 
straight lines from a point source at a distance t x - s  from 
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the crystal.* The terms Qz are defined in (5.4D. Then, 
to calculate the size of the window in pixels, we use the 
approximate formula 

API  "~ OQy wy  + OQz + lel (13.2I) 

which includes automatically the desired tendency to 
overestimate the size of the measurement window. The 
extra, positive, additive term, lel, whose value is usually 
taken to be 2.0 px increases further the size of the mea- 
surement window, partly to allow for the major part of the 
spread of the image of the spot because of the point-spread 
function (Thomas, 1990b), and partly just as a safety pre- 
caution to allow a certain tolerance in the prediction of 
the position of the diffraction spot. Equations (13.2), be- 
ing based on the Jacobian of the spatial distortions, also 
adjust the size of the window automatically to accommo- 
date the increasing distension of the observed images of 
the spots towards the sides and corners of the detection 
area (see Thomas, 1989). 

In fact, (13.1) can easily be made more like a fully vec- 
torial form by some simple substitutions. Note first that 
t X - D  -- l id" II and that a similar formula would exist for 
t x - s  though we do not normally use a direct-space vec- 
tor pointing from the crystal to the assumed point source 
of X-rays. The form Q~ + tx_D 2 is then replaced with 
the quadratic form, {6) 7d_Ld7 O}, where x x.. zd.Ld~ ts [like the 
rotationally symmetric operator, ._[-, in Thomas (1990a)t 
an idempotent real symmetric matrix of rank 2 having its 

* There is a further implicit approximation involved which is that the 
crystal is also VI thick in the direction of the beam and is of circular 
section in the plane illustrated so that the beam does not change section 
on reflexion. This is considered to be generally justifiable at the level of 
accuracy required and also has the desired effect of increasing slightly 
the calculated width at the detector. Dr R. Diamond has kindly pointed 
out that a crystal in the form of a thin plate normal to the beam would 

result in the equation w1 ~ VI [1 + (Q/2 + t X - D 2 ) / ( t x - s t x - D ) ] .  

t x - s  

- _ Q *  

W{,¢,,,,~ . . . . . . . . . . . .  . .  

tX-D 

V 

~ W v  

Fig. 9. The maximum possible size of a diffraction spot on the detector. 
This is calculated to a sufficient accuracy by tracing rays emanating 
from an assumed point source (typically about 220 mm from the crys- 
tal on a CAD-4) through the crystal to the detector. As noted in the 
footnote to the text, it is assumed that the beam does not change sec- 
tion passing through the crystal, which is the same as assuming that 
the crystal is as thick in the direction of the incident beam as it is wide 
in the direction marked, and is also of approximately circular section 
in the plane illustrated. 

null eigenvector along the detector Y axis if I = Z, or 
along the detector Z axis if I = Y. This yields 

¢ ox x ¢ 
w1 ~ V1 ,dld I O} t x - s  + {O ~dld~ O} 

IId±ll t x - s  
(13.3i) 

This formula still differs from the usual 'vectorial style' in 
as much as it represents the extent of the crystal in direct 
space by a parallelogram whose plane is parallel to that 
of the detector, whereas two- or three-dimensional distri- 
butions are normally represented by Gaussian or elliptical 
forms. However, one could hardly claim that the shapes 
of most crystals are represented better by an ellipse than 
by a rectangle, and given that we invariably use rectangu- 
lar windows in the pixel grid, there is no reason to adapt 
(13.3) any further unless the crystal is rotated about the 
beam during data collection. 

14. The shadow of the backstop 

The first two equations of § 13 survive in current code - 
even though the 'vectorial-style' equivalent could easily 
be substituted - mainly because there has been no partic- 
ular pressure to increase the versatility or machine inde- 
pendence at that point. The emphasis is in any case rather 
different with calculations of the region of a diffraction 
pattern occluded by a backstop, because the geometries 
of backstops appear to be too varied to be accommodated 
efficiently with a single formula. It still seems to be better 
to adopt an ad hoc calculation specific to the instrument 
in use. There is no reason why a selection of appropri- 
ate formulae cannot be pre-programmed, so that all of the 
backstops normally used on a given installation can be 
selected at run-time through the normal parsing routine. 
The equations used during dynamic data collection on the 
FAST system at Cambridge are given here as an example. 
This system collects data according to a strict rule: that all 
measurements of diffraction spots are complete (i.e. there 
are no 'partials') and no rejections are made for any rea- 
son after the measurement has been made; the corollary 
of this is that some measurements must be prevented from 
occurring. In practice those measurements which could be 
endangered by an obstruction such as the backstop or the 
mask delimiting the edge of the detection area are pre- 
vented by prior cancellation, as are spots diffracting be- 
yond a certain predefined resolution limit. 

The resolution is calculated most conveniently using 
the traditional variable, d .2 - IId*ll ~- = (RR) = (XX), 
which is already available as a by-product of the calcu- 
lation of the position at which a spot will strike the de- 
tector plane, being a part of (6.6). For reasonably mono- 
chromatic incident X-rays, the shadow of the backstop 
cup is modelled by a lower limit on d* 2, calculated from 
the following formula: 

= ( dback~or, k ) 2 
d*2min \ ~ , (14.1) 
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where dbackstop and tbaCkstop respectively are the diameter 
(N.B. ! not radius) of the backstop and the distance from its 
front rim to the crystal; k is the mean wavenumber of the 
X-ray beam, expressed in the same units as d *=. This part 
of the backstop-rejection calculation is likely to be com- 
mon to all experimental arrangements; it has the rather 
safe property of rejecting all spots which might have any 
part clipped by the backstop cup. The second part, which 
relates to the strip supporting the cup, may well not be: 
some backstops are supported on a very thin membrane, 
others by a single 'edge-on' strip and, less commonly, by 
more than one strip or rod-like member. Equally, the sup- 
porting strip oz" rod may be parallel sided or may be ta- 
pered and so on. For the FAST system, the strip is mod- 
elled as a parallel-sided obstruction aligned along the de- 
tector Y axis (vertically upwards on a normal installa- 
tion), and whose width is about one third of the diameter 
of the cup. Two new geometrical quantities are invoked: 
the first is an operator of rank 1 which is nilpotent in the 
directions of the incident beam and a line within the back- 
stop support, say C]C; the second is also an operator of 
rank 1, representing a vector pointing along the same line 
within the backstop support, say c), though it is used here 
in its covector form, (c. Strictly, C]C must satisfy 

CIC • =.[_ = =0 ,  (14.2) 

where E]__ = is an operator projecting its argument onto the 
plane containing both the mean line of the incident beam, 
S), and the line, c), within the backstop support. This def- 
inition forces CIC to be a representation of the normal to 
that plane. 

A diffraction spot will then be rejected if 

(RCICR) < 8d*amin and (cR} > 0, (14.3) 

which is illustrated in Fig. 10. The value of s, which de- 
fines the square of the ratio of the apparent thickness of 

(cR) > 0 

(RCICR) > 8d*Zmin 

(cR) < 0 

(RCICR) = 8d*=min 

# f  [ ~ d * 5 =  d*Zmin 

~ ) ?  . . . .  <ca> =o 

d*= > d*Umin 

Fig. 10. Occlusion by a simple backstop. When the reliability of data is 
important, it is better to reject by calculation those spots which might 
be clipped, rather than trying to discriminate unreliably the extent 
of the soft-edged backstop shadow from a noisy image. The calcula- 
tion for a FAST system shown here relies on three simple inequalities 
which cost very little extra computation. 

the backstop support to the size of the cup is normally 
taken to be ca 0.1. These calculations tend to produce a 
cut-out around the backstop which is larger than the per- 
ceived shadow and might therefore be considered some- 
what more cautious, which is appropriate when attempt- 
ing to collect reliable data. They are also much simpler 
to implement, and less temperamental, than the alterna- 
tive approach of trying to delimit an observed backstop 
shadow. 

15. Surveying a diffraction pattern for assessment 
and prealignment 

One of the best methods of assessing a crystal on an area- 
detector camera or diffractometer is to align it so that 
a net plane of the reciprocal lattice is roughly perpen- 
dicular to the incident X-ray beam, and then to take a 
small-angle precession photograph. With a properly cal- 
ibrated system, a relatively good estimate of the orienta- 
tion of the crystal (called a 'prealignment') can then be 
obtained from the centroids of the spots in the image, 
which fall into readily distinguishable rings. The equa- 
tions describing the necessary motions of the goniostat to 
bring a supposed plane normal into alignment with the 
beam and then to perform a precession motion have al- 
ready been given in Goniometry, §§ 8-9. Here the discus- 
sion is confined to a manual method of determining the 
(direct-space) zone axis from the image as used on the 
FAST system at Cambridge, though some users prefer to 
use automatic indexing routines when the diffraction pat- 
tern is 'clean' enough. 

We first make a reasonably short exposure and then 
start the assessment by positioning the cross-wire on the 
monitor screen over one of tffe observed spots. This can 
still be done most conveniently by hand using either a 
'mouse' or the cursor keys on the controlling keyboard. 
The cross-wire position, P, produced this way will typi- 
cally be accurate only to within a pixel or two, but this is 
usually accurate enough to index the spot if a rough cell 
matrix is already known. The computer program inverts 
the spatial distortions of the detector to give the approx- 
imate position of the spot on the detector faceplate or in 
the unit square of the spatial-distortion calculations (see 
Thomas, 1989, equation 6.2): 

" " P  +--- R-I(P) or " 'P  +-- A - 1 M - 1 / - / - I ( P ) .  

(15.1) 

(See Table 6.) This yields immediately the full three- 
dimensional description of the scattered ray emanating 
from the crystal: 

. l I p y  ) 
O} = ( d Y d z d ° ) " ' P  z 

1 

( ' " P Y )  
= ( di Y dl Z dlO ) m o . 
_ _  _ r  N 

1 
(15.2) 
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R 
C 
A 
M<, 
m 

N ° 
f l ip 
t l t lp 

p 
H 
W~ 
wc(P) 
z< 
z/ 

flo e. 

Table 6. Symbol table for § 15 

(aleph) the complete imaging process of the detector (Thomas, 1989) 
a constrained rotation, also used as the orientation of the centre of a precession motion 
the formal name of the principal distortion transformation 
an accumulated observational normal matrix 
a scalar weighting factor for each diffraction spot 
the ordinal number of a ring in a diffraction pattern 
the result of pulling P back through H, M and A, = ("'PY, "'Pz) 
the result of pulling P back from the pixel grid to the detection plane, as IR- 1 (p) 
a dummy argument representing P 
the formal name of the pixel-allocation transformation 
the integrated corrected observed intensity, dimensioned as 'counts' 
the corrected observed intensity at P, dimensioned as 'counts per pixel area' 
a zone axis; the special notation insists that the dimensioning be inverse to the reciprocal-space vectors 
an accumulated 'observational vector' 

a special area integral over a circular window, considered as an indivisible algebraic operation 

This vector can then be rescaled to give the reciprocal- 
space representation of the scattered beam: 

T) = llS)ll 
I le} l l  " '  (15.3) 

and hence the reciprocal-lattice vector in the diffracting 
position: 

R) = T) + S). (15.4) 

Using the central orientation, 12 [see Goniometl T, equa- 
tion (8.19)], of the precession motion to represent the ap- 
proximate orientation of the crystal when the spot was 
diffracting, an approximate datum orientation of the cor- 
responding reciprocal-lattice vector is then given by 

X) = C R ) ,  (15.5) 

where C is the rotation inverse to t2. If an approximate 
conventional direct-space unit-cell matrix is known, the 
indices of the spot can be estimated as 

h = ( h , k , e ) =  [(XF] . (15.6) 

The square parentheses here denote rounding to the near- 
est integer. This is not necessarily the nearest reciprocal- 
lattice point, but no errors arise until the calculated in- 
dices before rounding are so far from any lattice point 
(i.e. roughly half-way between) that the possibility of de- 
termining a correct assignment would be considered im- 
plausible. In practice, these indices are displayed on the 
VDU continually while the crystallographer is moving 
the cross-wire, and can be a Very useful check on pro- 
gram operation. Once the crystallographer has decided to 
make use of a given spot, the number, N °, of the ring 
that it occupies is typed in. The centroid of the image 
of the spot is then determined accurately by integration 
within a soft-edged circular window using the same spe- 
cial Weber-Hermite integral as is used in calibration pro- 
cedures (Thomas, 1989, 1990b) and in profile analysis. 

The integral over the background-corrected image, writ- 
ten 

p p  

14c = / / d 2 p  Wc(p), (15.7) 
~ O  

gives a good estimate of the perceived intensity of each 
diffraction spot, and it can be used to divide the first mo- 
ment to give the error of the cross-wire position in pixels: 

I 
f f d 2 p  Wc(p) (p - P). (15.8) AP = ~ aaO 

A second-rank quantity is similarly defined from the sec- 
ond moment: 

1 
ffdZp Wc(p) (p - P) ® (p - P). (15.9) A P ® A P = W c c a a  O 

These quantities are sufficient to define a weighted inverse 
variance-covariance matrix, 

Wc [ A P Q  A P -  A P ®  AP] -1 (15.10) 

The square root of the determinant of this 2 x 2 matrix 
is evaluated to form a scalar weight for each diffraction 
spot: 

m = ¢ I W c [ A P ® A P - A P ® ~ - 0 ] - I  I. (15.11) 

This equation is not formally justified, but its performance 
is found to be adequate for practical needs. The radical 
form restores the result to linearity on 14'c and makes it 
inversely proportional to a typical linear dimension of the 
image of the spot. If the data were three-dimensional in- 
stead, the cube root would have been taken, and so on. 

Every reciprocal-lattice point, X }, when viewed down 
a zone axis Z{, appears in a ring numbered N ° given by 

N ° =  )ZX). (15.12) 
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The special notation for the zone axis (which is not rec- 
ommended for wider use) is intended to indicate that the 
dimensioning of this vector must be exactly inverse to that 
of the reciprocal-space vector, X). It is, of course, the vec- 
tor in direct space and not the whole-number zone symbol 
[UVW] that is intended. A least-squares solution obtains 
by minimizing the quadratic residual 

x - "  - 

(15.13) Z_., 2 
h 

summed over the set of accepted points (indexed by h). 
This is done by augmenting an observational vector, z), 
and a normal matrix, Mo, with data from each new spot 
according to 

Z> = y ~  Xh>mhN~ (15.14) 
i 

h 

and 

n o  = ~'~ Xh>T/2h <Xh. (15.15) 
h 

The diamond subscript follows the notation of Thomas 
(1989) in implying the presence of a hidden double de- 
pendence on a metric, in this case the one on which 
reciprocal-space vectors are measured. When the crystal- 
lographer is satisfied that a sufficient number of spots have 
been accepted, the perceived zone axis is evaluated by the 
usual technique of multiplying the observational vector 
by the inverse of the normal matrix: 

Z( = M~-I z). (15.16) 

In practice, we find that zone vectors determined this way 
are accurate to about 0.1 o, which is good enough to be 
able to start dynamic data-collection runs (see Thomas, 
1982a,b, 1985). The perceived lengths of the zone axes 
are usually not particularly accurate; however, consider- 
ing the simplicity of the method and the approximations 
involved, they give no cause for complaint. 

Concluding remarks 

Diffraction cameras and diffractometers, whether fur- 
nished with a single counter or with an area detector, all 
have the same basic layout and are therefore amenable to 
a unified mathematical description. In this paper I have 
described a unifying vectorial description of all of the 
basic geometries necessary to enable the measurement 
of diffraction intensities with an area diffractometer. It 
has a surprisingly simple overall structure. The burden 
of a full component representation is avoided by using a 
modern coordinate-free notation. A concomitant advan- 
tage is the complete avoidance of computationally ex- 
pensive and analytically inconvenient trigonometric func- 
tions. The vectorial method also simplifies the calcula- 
tion of the first-derivative (Jacobian) and the second- 

derivative (Hessian) terms so necessary for refinement 
procedures and the more advanced methods of data reduc- 
tion. The concept of 'misorientation angles' are avoided 
completely; indeed, angles in general are used only rarely 
when absolutely necessary. Now, instead, the Cartesian 
component representations of the geometric elements are 
refined directly. The few occasions when trigonometric 
calculations are unavoidable in diffractometry were for- 
malized in Goniometry (Thomas, 1990a). Full component 
representations facilitate the duplication of the equations 
as working computer code. 

It has been shown that the entire analysis of area dif- 
fractometry can be generalized using vectors and covec- 
tots manipulated with matrix algebra: the familiar isosce- 
les triangle of the kinematic theory of diffraction can be 
described using a symmetric contracted notation simi- 
lar to that of Dirac; the diffracting position for a given 
reciprocal-lattice point can be calculated for a generalized 
rotation method; the conventional dimensionless Lorentz 

A 

factor, L (here, strictly ILl), can be redefined in favour of 
a simpler and more generally useful quantity, T; the con- 
ventional polarization factor, p, can also be re-expressed 
from a second-rank tensor. 

The novel and previously unpublished formula for the 
diffracting width of a spot given here is both efficiently 
calculable and yet also particularly accurate, being able to 
accommodate quite general beam imperfections and tri- 
axial crystal mosaicity distributions; this is accomplished 
using a degenerate formula for a previously unreported 
tensor-like quantity, H_I, which dominates the analysis of 
the full three-dimensional profiles of diffraction spots. 

It would be wrong to think that it is always possible 
or even desirable to generalize our equations, and the 
calculation of the windows enclosing diffraction spots 
and of the shadow of the backstop have been given as 
counter examples. The useful manual solution to the prac- 
tical problem of how to assess a diffraction pattern and 
to pre-align a crystal from a small-angle precession pho- 
tograph shows a style typical of modern equations of 
diffractometry, in the sense that it combines the use of 
Weber-Hermite functions, correctly quantum-weighted 
least squares,* and some of the most powerful available 
geometric and notational methods. 

I am grateful to Drs U. W. Arndt FRS, A. C. Bloomer, 
A. Guinier, S. Mason, E A. Tucker and especially R. Dia- 
mond for help and advice whilst preparing the manuscript, 
and to Mary Holmes for continued help in obtaining the 
older references. Most of the computational work lead- 
ing to this paper was supported by the Medical Research 
Council of Great Britain as part of the development of 
the Enraf-Nonius FAST system; the manuscript was com- 
pleted at the European Molecular Biology Laboratory 
supported by an I:M BO long-term fellowship. 

* That is, each incoming photon contributes with equal weight to the 
final answer. 
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APPENDIX A 

Some notational symmetries 

It has already been noted that the notation in this and in 
the previous paper is so symmetric that it comprehends 
both the character in reciprocal space and the character 
in direct space simultaneously, though simple computa- 
tional (i.e. component) forms comprehend only one of the 
two characters at a time. With the restricted convention 
that -) is a vector in reciprocal space and that (" is a vec- 
tor in direct space, a left to right flipping of an equation 
would be inte.rpreted as inverting the named quantities 
into their mutual dual spaces: the reciprocal-space vec- 
tor .) becomes the direct-space vector (. ,  and the direct- 
space vector (. becomes the reciprocal-space vector .). 
It is equally valid to use the interpretation that all quan- 
tities are expressed in reciprocal space, in which case the 
reciprocal-space vector .) becomes the reciprocal-space 
covector (" and vice versa; it is no less valid to use the 
interpretation that all quantities are expressed in direct 
space and the direct-space vector (. becomes the direct- 
space covector .) and vice versa. Computafionally, this 
left to right flipping of the equations has very much the 
character of transposition, much in the same way as a 
matrix equation can be transposed. This much was estab- 
lished already in Goniometry where, indeed, the notation 
was specially constructed to have these properties in or- 
der to allow the efficient solution of rotational problems. 
Thus, at first sight, the concise notation may already ap- 
pear complete and sufficient, so long as the connection be- 
tween dual spaces and Fourier transforms is not realised. 
At this juncture, however, a potential conundrum arises 
because a Fourier transform has to be applied not twice 
but four times to bring a system back to its starting rep- 
resentation; a mere double application has the effect of 
inverting through a centre. This immediately raises the 
question: 'can this notation model Fourier transformation, 
or is it deficient?' 

An obvious observation is that a notation capable of 
representing the fourfold Fourier cycle must comprehend 
a fourfold set of permutations on the page; two exist al- 
ready, i.e. reading from left to right or from right to left; 
writing on the back of the paper, apart from being incon- 
venient, would give basically the same result as the left 
to right flip already in use if the paper were transparent 
enough to see it; it would seem that the only remaining 
choice is to write the equations upside down (or rotated 
180°)! 

The four ways of writing the rotationally invariant 
scalar form (X#]~S)  are 

(S l x) (X l S> ' 

(AO) 

where the central vertical rule mediates the left to right 
flipping like a mirror plane, and the lower line is an 
upside-down representation of the upper one. In this par- 

ticular case, there is no apparent difference, which is cor- 
rect for a rotationally invariant scalar. 

The antisymmetric scalar form, r/ (see Table 3), be- 
haves differently: 

(StI,]_~X) (X~I,_[-~S) " (A1) 

The long overlines here denote the same as a minus sign, 
in the conventional manner of crystallography. They are 
needed because the scalar forms within angle brackets on 
the lower line have the opposite value to those on the up- 
per line until the minus sign is imposed. The symmet- 
ric form, e, has the same property of changing sign when 
turned upside down: 

(SWTWx) (XWTWs) ' (A2) 

as, indeed, does the alternative way of writing the anti- 
symmetric form above, -r / :  

(S~fgX)  (X~].gS) " (A3) 

These are fully in agreement with any of the interpreta- 
tions: 

Original 

Original 

Normal direct space 

Inverted direct space {o 
2 

Fourier } 

Fourier 

Normal reciprocal space / 

/ Inverted reciprocal space l) 
3 ' (A4) 

where Original means the original space inverted through 
a centre, and similarly for the Fourier space. The num- 

0 1 bers { 2 ] a } denote the appropriate number of forward 
Fourier transformations starting from the original version; 
they are counted modulo 4. The numbering of displays 
(A0)-(A3) is chosen to match the four parities of the 
Weber-Hermite functions, which also necessarily follow 
the same symmetries. 

Thus, it can be seen that the notation is not in any 
way deficient; rather, it is fully competent to unify vec- 
tor/covector formulations, inversion to dual spaces and 
Fourier transformation. No real work is involved; it com- 
prehends all interpretations simultaneously. 

APPENDIX B 

Restricted general inverse 

The generalized inverse of singular and non-square matri- 
ces is generally credited to Moore ( 1920, 1935) or to Pen- 



D. J. THOMAS 157 

rose (1955), who was unaware of Moore's earlier work. 
Rao & Mitra (1971) discuss the theory and the history 
very clearly in the preface of their book. The article by 
Peters & Wilkinson (1970) may also be found useful. The 
use of generalized inverses here is quite restricted and can 
be summarized sufficiently by defining the practical com- 
putation of them. 

Given a non-square matrix, say F, define either 

= [FTF] -1 V (B1)  

or  

= FT [FFT ] -1 (B2) 

For all of the applications here, one of the two forms 
above in square brackets will be a positive-definite real 
symmetric matrix, and hence susceptible to classical ma- 
trix inversion. 

Note added in proof: The left-hand sides of equations 
(7.7) to (7.12), being second derivatives, should each 
have a superscript 2 to follow normal convention. 
The omission was inadvertent and should not be 
taken to imply an intended or desirable notational 
contraction. 
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Abstract 

Unresolved disorder can lead to structural distortions 
because of averaged atomic positions. The influence 
of the isotropic probability density function (p.d.f.), 
the distance between the disordered positions and 
the site occupation factors of a disordered C atom 
on the apparent position and anisotropic p.d.f, of the 
adjusted atom is studied with a simple model for the 
centrosymmetrical case. The electron density is 
derived from the STO-3G wave functions and con- 
voluted analytically with the corresponding p.d.f. The 
optimal positional and displacement parameters are 
obtained by minimization of the integral of the square 
of the difference electron density. Several electron- 
and difference-density plots are shown in order to 
demonstrate the goodness of the adjustment and 
several correlations between the parameters of the 
disordered and adjusted atoms are discussed. The 
results are applied to some examples where unre- 
solved disorder may be possible. 

1. Introduction 

Disorder occurs in the crystalline phases of many 
kinds of organic and inorganic compounds and may 
be the result of dynamic processes in a molecule or 
a crystal (dynamic disorder) or of two or more 
different orientations of a molecule in a crystal with 
similar energies (static disorder). If the different posi- 
tions of an atom are resolved in an electron-density 
or difference-density map, it is in many cases possible 
to refine these positions with partial populations 
[assuming isotropic or anisotropic harmonic poten- 
tials (see e.g. Altona & Sundaralingam, 1972; Siegel, 
Guti6rrez, Schweizer, Ermer & Mislow, 1986)] or to 
describe this atom with an anharmonic potential (see 
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e.g. Kuhs, 1983; Bachmann & Schulz, 1984). But if 
the disordered positions cannot be resolved due to a 
too small data set or due to the small distance between 
the positions, then the only hint of the presence of 
disorder is an unexpected shape or orientation of the 
displacement ellipsoid (Dunitz, Maverick & True- 
blood, 1988; Dunitz, Schomaker & Trueblood, 1988). 
Some of the most persistent problems of physical 
organic chemistry are related to unresolved disorder 
because the different molecules or orientations of 
molecules are so similar that the distances between 
the disordered atomic positions are in the range of a 
few tenths of an ~ngstr6m or even smaller. Well 
known examples are the structure of benzene (Ermer, 
1987; Janoschek, 1987), antiaromatic systems 
(Dunitz, Krfiger, Irngartinger, Maverick, Wang & 
Nixdorf, 1988), methanoannulenes (Bianchi, Pilati & 
Simonetta, 1981; Gatti, Barzaghi & Simonetta, 1985) 
and semibullvalenes (Jackman, Benesi, Mayer, Quast, 
Peters, Peters &von Schnering, 1989). Some inorganic 
examples were discussed by Chandrasekhar & Bfirgi 
(1984). A similar problem occurs in the interpretation 
of the X-ray structures of substituted 8,9,10-trinor- 
born-2-yl and 8,9,10-trinorborn-2-en-7-yl cations 
(Laube, 1987, 1989), which could in principle also 
be described as superpositions of classical ions, if the 
anisotropic displacement parameters (ADPs) are 
ignored [for the problem of bridged and equilibrating 
carbocations, see e.g. Brown (1977); Olah, Prakash 
& Sommer (1985)]. In order to estimate the m a x i m a l  
possible distance between disordered positions hid- 
den in ADPs, we analyse in this work with a simple 
model the influence of the distance between two dis- 
ordered positions of a C atom, their site occupation 
factors and their isotropic displacement parameters 
on the apparent position and ADPs of this atom. 
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