

SDK Hello World
Page 1 of 5

PseudoArp Exercise

This exercise will introduce the use of one of
the provided DSL clients. A mapping will be
created that maps IP address in a shelf to MAC
address. We are doing this so that the next
exercise has a database to work with.

Objectives:

- Construct a C++ class and compile it rather
than a set of C routines as in the Hello World
example.

- Introduce a DSL client.

- Introduce the concept of the BSI

- Construct a Pseudo ARP table for use in a
later exercise

SDK Hello World
Page 2 of 5

The Address Resolution Protocol (ARP) is used to resolve network layer addresses (IP address) to link layer addresses (MAC
addresses). This exercise creates a “Pseudo ARP” database for use with the next exercise (Pseudo UDP). The methodology is to do
the following:

 Loop over all RCEs in the crate by slot, bay and RCE (2 slots * 4 bays * 2 RCEs == 16)

 Ask each RCE for its IP and Ethernet information via the DSL client class service::atca::Client.

 Store this information in a small key-value-table.

1 In your downloaded copy of workshop_examples (expanded in
the previous exercise), change directory to arp_example and take
a look at the PseudoArp.hh include file.

bash> cd workshop_examples/arp_example

bash> less PseudoArp.hh

2 Here’s the class definition for PseudoArp

#include <inttypes.h>

#include "kvt/Kvt.h"

namespace examples {

 class PseudoARP {

 public:

 PseudoARP();

 ~PseudoARP();

 public:

 uint64_t lookup(uint32_t);

 public:

 int refresh();

 private:

 KvTable _table;

 };

}

Notes and Comments

 The lookup() function takes an IPV4
address (in network byte order) as an
argument and returns the MAC address
associated with it.

 refresh() is the function which constructs
the mapping between IPV4 and MAC.

 KvTable is a very lightweight key-value
table provided with the RPT core. KvTable
objects can only store 32 bit values, so they
tend to have a pretty low memory footprint.

SDK Hello World
Page 3 of 5

3 Now, open PseudoArp.cc. The lookup function reads:

uint64_t PseudoARP::lookup(uint32_t ip)

{

 uint32_t reduced;

 KvtKey key = Hash64_32(0, ip);

 if ((reduced=(uint32_t)KvtLookup(key,_table))

 == 0) {

 // not found

 return 0;

 }

 return _unreduce(reduced);

}

Notes

 If the underlying lookup returns zero, this
means that the IP address isn’t in the table.

 KvTable can only store 32 bit objects. Since
MAC addresses are 48 bits long, we must do
something to make the address that length.

 PseudoArp uses knowledge that the MAC
address space for RCEs is allocated with the
first two bytes as 08:00. _unreduce()
adds these two bytes back.

4 The next important function is refresh. The first part of the
function fetches the shelf name from the BSI:

Bsi bsi = LookupBsi();

if (!bsi) { // error state, deal with it.

 return rc;

}

uint32_t addr;

char

buffer[BSI_GROUP_NAME_SIZE*sizeof(unsigned)];

shelf = BsiReadGroup(bsi, buffer);

SDK Hello World
Page 4 of 5

5 The last part of refresh calls _populate_loop(). This function
loops over slots, bays and elements and calls a lookup on each
element in the shelf to get its IP info. Here we show the first part
of the loop.

service::atca::Client client;

service::atca::Address addr(shelf,

 slot+1, bay, rce);

service::dsl::Location* loc =

 client.lookup(addr);

if (!loc) continue;

Notes

 service::atca::Client is tbe DSL client
used by atca_dump and atca_ip to resolve
the shelf/slot/bay/element space to IP
space.

 When service::atca::Client
::lookup() is called, the class sends a
broadcast out asking for a match If a
response is received, that information is
returned. If not, it retries (up to 5 times) and
then times out, and lookup returns NULL.

6 The second part of the loop extracts the MAC address and IP
address from the info returned by client.lookup(), chops off
the known bytes from the MAC address and saves the info to the
table.

uint32_t ipaddr = loc->layer3.addr();

uint64_t mac = loc->layer2;

KvtKey key = Hash64_32(0, ipaddr);

KvtValue value = (KvtValue)_reduce(mac);

// If the insert goes bad, return error

if (0 == KvtInsert(key, value, table))

 return -1;

++count;

Notes

 count is used here as an error check. If
nothing is found by the end of
_populate_loop(), then an error is
declared.

7 The last part of PseudoArp.cc that is important is at the end, by
lnk_prelude. (PRINT statements are removed for brevity.)

examples::PseudoARP*

 common_pseudoarp_instance = 0;

// "Install" this object

extern "C" const int lnk_options = LNK_INSTALL;

extern "C" int lnk_prelude(void *arg, void *elf)

Notes

 A common PseudoArp instance is created in
lnk_prelude. This is used by code which
uses the library.

 Notice the lnk_options constant. When
set to LNK_INSTALL, the library is not
simply loaded into memory, it is installed

SDK Hello World
Page 5 of 5

{

 common_pseudoarp_instance =

 new examples::PseudoARP();

 return 0;

}

into a load table.

 Do this either when multiple pieces of code
will use the library, or when a task is going to
be run over and over again and the library
should only be loaded once (per boot cycle)

8 In arp_task.cc, Task_Start() looks up the MAC address of
this node from the table, and prints the result.

9 Build the code with build.sh. Then run it with:

[/] run examples:arp_test.exe

Check the output via syslog and notice that your RCE’s IP address
is printed.

Notes

 If one or more of the RCEs in the shelf are
absent, the task will take seconds (or
minutes) to run. If all are there, the task will
finish quickly

