

SDK Hello World
Page 1 of 9

Hello World Exercise

This exercise will introduce the SDK tools and
the programmers’ development cycle on the
RCE. A simple program will be created, loaded
and run

Objectives:

- Get started with the SDK

- Connect to an RCE via telnet

- Create and load a simple shared library

- Create and run a Task

- Parameterize the .so and .exe with a SVT

SDK Hello World
Page 2 of 9

Part One: Getting started

Your software/system administrator will have loaded the SDKs to a common group area. Let us call that area $RPT_ROOT. For the
CERN workshop, this area is: /home/workshop/V0.7.1-WS. The exercise presenter (or your local contact) should have given you
an RCE address to use. Remember, this address is of the form shelf/slot/bay/element, i.e. “snowbird/1/0/0”. For this exercise,
this is the RCE address we’ll use as an example. Your network administrator should also tell you what interface the RCE is visible on.
For the CERN workshop, this is eth0.

1 Set up the SDK environment by sourcing your environment scripts
in your favorite shell. For this exercise, we’ll use /bin/bash.

bash> source /home/workshop/envs.sh

If you are a tcsh user only:

tcsh> source /home/workshop/envs.tcsh

Comments

The setup scripts will add the SDK bin directories to
your PATH.

2 Dump your RCE’s IP information.

bash> atca_dump snowbird/1/0/0 --ifname p1k1

Output

3 Connect to your RCE via telnet

bash> telnet $(atca_ip snowbird/1/0/0 \

 --ifname p1k1)

Note

You should see the RTEMS prompt: [/]

4 List the contents of /, mount your home directory via NFS and
then exit.

[/] ls /

[/] mkdir /test

[/] mount -t nfs 192.168.210.9:/home/<user> /test

[/] ls /test

[/] exit

SDK Hello World
Page 3 of 9

Part Two: The Hello World Shared Library

The Hello World example starts with creating a shared library, loading it into memory, and observing the output in the system log.
The shared library is then hooked into a simple task

2 Copy workshop_examples.tgz from /home/workshop and
expand it.

Change directory to workshop_examples/hello_example and
open the hello_so_1.c source file using, for example, the emacs
editor.

bash> cd workshop_examples

bash> emacs hello_so_1.c

3 Sample code:

#include <stdio.h>

#include "debug/print.h"

#define PRINT dbg_printv

int hello(void) {

 PRINT("Hi! I'm a .so!\n"); return 0;

}

int goodbye(void) {

 PRINT("Goodbye .so!\n"); return 0;

}

int lnk_prelude(void* arg,

 void* elf) {

 PRINT("Hello prelude!\n");

 hello();

 goodbye();

 PRINT("Goodbye prelude!\n");

 return 0;

}

Notes and Comments

 We are using the dbg_printv function to

send output to the system log. printf
sends to stdout, which is the console.

 lnk_prelude is called when the library
loads

SDK Hello World
Page 4 of 9

4 Take a look at build.sh, which compiles and links this whole
example. Your shared library is output as hello_1.so.

build.sh uses the rtems-gcc and rtems-ld scripts discussed
in the software development (SD) talk to compile and link the
example.

Notes

 rtems-gcc and rtems-ld are wrappers
around the actual cross compilers (currently
installed in /opt/rtems-4.11).

 Observe the "examples:" string in the link
statement. This is the namespace discussed
in the SD talk.

 Observe also the -l:rtems.so fragment
which allows resolution of the dbg_printv
symbol.

5 telnet back to your RCE, as in part 1, and see that your new
shared library is in your directory. Also look in the "compiled"
subdir of workshop_examples and see that the output appears
there as well.

[/] ls /test/workshop_examples/hello_example

[/] ls /test/workshop_examples/compiled

6 Create the "examples" namespace that points to your
"compiled" subdirectory. Check that the path is fine using
ns_map.

[/] ns_assign examples

/test/workshop_examples/compiled

[/] ns_map examples:hello_1.so

Notes

 You should see the proper path as a result of
the ns_map command.

SDK Hello World
Page 5 of 9

7 Load the library. Observe that the output is in the system log.

[/] load examples:hello_1.so

[/] syslog

Output
Here, we elide over the timestamp.

… Hello prelude!
… Hi! I'm a .so!
… Goodbye .so!
… Goodbye prelude!

7 Now, we'll link hello_1.so with a Task. (Tasks were explained in
the SD talk.) First, open the hello_task.c code in your editor.

#include <stdio.h>

#include "debug/print.h"

#include "task/Task.h"

#define PRINT dbg_printv

// Functions from hello.so

extern int hello(void);

extern int goodbye(void);

void Task_Start(int argc,

 const char** argv) {

 PRINT("Hello from Task!\n");

 hello();

 PRINT("Return from Start.\n");

 return;

}

void Task_Rundown() {

 goodbye();

 PRINT("Goodbye from Task!\n");

 return;

}

Notes

 Note the new include of Task.h. This
include defines the Task semantics. (See the
SD talk)

 All tasks must have a Task_Start and a
Task_Rundown. These are the entry and
exit points.

8 Look again at build.sh for the linking of hello_1.so with
hello_task.o. The script uses rtems-task to perform the
linkage.

Notes

 The rtems-task statement references both
hello_task.o and hello_1.so

SDK Hello World
Page 6 of 9

9 Now, run the new task.

[/] run examples:hello_1.exe

Hello prelude!
Hi! I'm a .so!
Goodbye .so!
Goodbye prelude!
Hello from Task!
Hi! I'm a .so!
Return from Start.
Goodbye .so!
Goodbye from Task!

Output

 Observe that the prelude loads and its
output appears before the task.

SDK Hello World
Page 7 of 9

Part Three: Parameterization

Hello world continues by adding a parameterization to the task via the SVT mechanism discussed in the Software Development talk.

1 Open hello_svt.c in your editor.

char const HELLO_MESSAGE[]= \

 "Hello from svt!";

char const GOODBYE_MESSAGE[]= \

 "Goodbye from svt!";

Notes

 Notice that hello_svt.c only defines two
symbols. That's what an SVT (Symbol Value
Table) is for!

 You can put anything you want in a symbol, be it
an array, struct or instance of a C++ class.

2 Now look at hello_so_2.c in your editor.

#include <stdio.h>

#include "svt/Svt.h"

#include "debug/print.h"

#define PRINT dbg_printv

#define NUM 15

#define TABLE (1<<NUM)

int hello(void) {

 PRINT("Hi! I'm a .so!\n");

 const char* hm =

 Svt_Translate("HELLO_MESSAGE",TABLE);

 if(hm) PRINT("%s\n",hm);

 return 0;

}

int goodbye(void) {

 const char* gm =

 Svt_Translate("GOODBYE_MESSAGE",TABLE);

 if(gm) PRINT("%s\n",gm);

 PRINT("Goodbye .so!\n");

 return 0;

}

Notes

 Since hello_so_2.c needs to deal with SVTs,
include the relevant header.

 We're going to create our own table, let's choose
number 15. We also need it as a bitmap.

 Svt_Translate is the lookup of the symbol. If
the lookup fails, 0 is returned.

SDK Hello World
Page 8 of 9

int lnk_prelude(void* arg,

 void* elf) {

 PRINT("Hello prelude!\n");

 hello();

/* install the hello SVT */

 Svt_Install(NUM, "examples:hello.svt");

 goodbye();

 PRINT("Goodbye prelude!\n");

 return 0;

}

 In lnk_prelude, we install the SVT into its table
location, referencing the SVT by namespace.

 Since the SVT is installed, it may not be
uninstalled without extensive dependency
tracking. Even Linux doesn’t do this. Once it is
installed, it stays until the next reboot.

3 Again, examine build.sh for the compiling and linkage of
hello_svt.c to hello.svt. The output should already be
in your "compiled" directory.

The task object hello_task.o is linked with hello_2.so
into hello_2.exe

Notes

 Compiling an SVT is exactly like compiling a
regular C or C++ file.

 Linking an SVT requires use of the rtems-svt
wrapper script, discussed in the SD talk.

 Using an SVT requires nothing in the link
statement. The linkage is done programmatically
via Svt_Install().

4 Now, we run the hello_2.exe on the RCE.

[/] run examples:hello_2.exe

Hello prelude!
Hi! I'm a .so!
Goodbye from SVT!
Goodbye .so!
Goodbye prelude!
Hello from Task!
Hi! I'm a .so!
Hello from the svt world!
Return from Start.

Notes

 When hello.exe loads hello_2.so, the SVT is
not loaded until after trying the hello()
function in the .so. Therefore, the lookup of
HELLO_MESSAGE from of the SVT returns null.

 However, GOODBYE_MESSAGE is found, as its
lookup is after the SVT load.

 When the Task runs hello(), the SVT is loaded
so the lookup of HELLO_MESSAGE works fine.

SDK Hello World
Page 9 of 9

Goodbye from the svt world!
Goodbye .so!
Goodbye from Task!

5 Edit the SVT and change the messages to whatever you want.

Recompile with build.sh, then reset your RCE from Linux:

bash> cob_rce_reset snowbird/1/0/0

Wait ~30 seconds until your RCE boots. Then telnet back in
and remount the NFS drive as in part 1, step 3 and 4.

Reassign your namespace as in part 2, step 5. Run
hello2.exe as in step 4.

Notes

 We reset the COB (or reboot it) as an SVT is
installable exactly once per boot.

 After resetting (and without relinking your task),
the message will have changed.

