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Conditions Database Overview
❏ Currently, all detector conditions are being stored in a MySQL development database at SLAC (on 

Jeremy’s linux box) 
❏ A series of converters are used load conditions records from the database and convert them to Java 

objects (e.g. SvtCalibration)
❏ This results in a collection for each of the conditions sets (e.g SvtCalibrationCollection has 

an object for every SVT channel)
❏ These conditions collections are further encapsulated by a sub detector conditions object (e.g. 

SvtConditions) in order to simplify access.
❏ Which versions (collection_id) of each of the conditions sets are loaded are determined by a 

conditions record
❏ A conditions record

+----+-----------+---------+---------------------+---------------------+------+------------------+------------------+-------------------+----------------+
| id | run_start | run_end | updated             | created             | tag  | created_by notes |  name            | table_name        | collection_id  |
+----+-----------+---------+---------------------+---------------------+------+------------------+------------------+-------------------+----------------+
|  1 |         0 |       0 | 2014-09-10 17:20:12 | 2013-09-20 13:19:55 | dev  | jeremym          | svt_calibrations | svt_calibrations  |             1  |

relates a run range and, soon, a run tag to a table name and a collection ID
❏ A conditions record per table and conditions set is required except for bad channels

All code can be found in the package org.hps.conditions
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What SVT Conditions are Currently in the Database
❏ The following conditions sets for engineering (test) run are currently in the database *contained in both sets

❏ The SVT DAQ Map
❏ Contains FEB ID (FPGA ID), FEB hybrid ID (hybrid ID), SVT half*, layer and side

❏ SVT “calibrations” i.e. channel baseline and noise
❏ Contains pedestal and noise for each of the six samples read out per channel 

❏ Channel gains and offsets
❏ Shaper fit parameters

❏ Amplitude, t0, tp and chi2 (not used) of fit to calibration pulse for each channel
❏ t0 shifts
❏ Alignment constants (may not be used)
❏ Bad channels
❏ SVT DAQ configuration
❏ There is also a table containing a list of channel ID’s which denote a specific FEB ID (FPGA ID), FEB 

hybrid ID (Hybrid ID) and channel
These are not set in stone and will change if necessary.  Feedback is appreciated ...
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Accessing SVT Conditions
❏ All SVT conditions collections are encapsulated by an SvtConditions object, however, this is not the 

recommended way to access all conditions
❏ Instead, a setup class (SvtDetectorSetup/TestRunSvtDetectorSetup) is used to load all 

conditions, except for alignment constants and configurations, into sensor objects 
(HpsSiSensor/TestRunSiSensor) which are part of the geometry
❏ HpsTestRunSiSensor is a subclass of HpsSiSensor which is a subclass of SiSensor -- Done 

for backwards compatibility with the test run
❏ The sensor objects also give access to the sensor layer, orientation (axial/stereo), detector volume 

(top/bottom) and it’s identifier in the actual system i.e. FEB ID (FPGA ID), FEB hybrid ID (hybrid ID)
❏ The details of these classes can be found in the code by looking in the lcsim package

org.lcsim.detector.tracker.silicon

❏ Adding the drivers ConditionsDriver and TestRunConditionsDriver to the beginning of your 
steering file will load the conditions and will setup all sensor objects (See the readout/recon steering 
files for some examples)

❏ Note: The driver SvtSensorSetup also needs to be added to the chain of drivers, otherwise, things 
will crash.
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Typical Use Case
public class SvtDummyAnalysis extends Driver {
    
    private List<HpsSiSensor> sensors = null;
    private String rawHitCollectionName = "SVTRawTrackerHits";
    private static final String SVT_SUBDETECTOR_NAME = "Tracker";
  
    @Override
    protected void detectorChanged(Detector detector) { 
        // Get the collection of all sensors from the geometry
        sensors = detector.getSubdetector(SVT_SUBDETECTOR_NAME).getDetectorElement().findDescendants(HpsSiSensor.class); 
    }
   
    @Override
    public void process(EventHeader event) {
       
        // Get the RawTrackerHits from the event
        List<RawTrackerHit> rawHits = event.get(RawTrackerHit.class, rawHitCollectionName);
   
        for(HpsSiSensor sensor : sensors){ 
            sensor.getT0Shift(); 

 for(int channelN = 0; channelN < 640; channelN++){
     for(int sampleN = 0; sampleN < 6; sampleN++){
         sensor.getNoise(channel, sampleN);
         // Do Something …
     }
 }

        }        

        // Loop over all fitted hits
        for(RawTrackerHit rawHit : rawHits) { 
           
            HpsSiSensor sensor = (HpsSiSensor) rawHit.getDetectorElement(); // Or cast ot HpsTestRunSiSensor
            int channel = rawHit.getIdentifierFieldValue("strip");

for(int sampleN = 0; sampleN < 6; sampleN++){
    double pedestal = sensor.getPedestal(channel, sampleN); 
    double noise = sensor.getNoise(channel, sampleN);
    // Do something ...
} 

        }
    }
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❏ Currently, all SVT calibration code has already been written in C++ with no plans to port to Java.
❏ The plan is then to dump all extracted calibrations (baseline, noise, gain and offset) to a file in XML 

format which would then be parsed and loaded into the conditions database using the existing Java API 
(SvtCalibrationsLoader)
❏ Work on the loader is in progress

❏ Before conditions are loaded, a user will need to verify that all conditions
look reasonable e.g. check baseline and noise vs golden baseline and noise
❏ Still debating whether the monitoring app will be used to do this

<?xml version="1.0"?>
    <system id=”SVT”>
        <FEB id=”0”>

<Hybrid id=”0”>
    <channel id=”0”>
        <baseline sample=”0”>3000</baseline>
        <noise sample=”0”>50</noise>
        <baseline sample=”1”>3000</baseline>
        <noise sample=”1”>50</noise>
        <baseline sample=”2”>3000</baseline>
        <noise sample=”2”>50</noise>

                  <baseline sample=”3”>3000</baseline>
        <noise sample=”3”>50</noise>

                  <baseline sample=”4”>3000</baseline>
        <noise sample=”4”>50</noise>

                  <baseline sample=”5”>3000</baseline>
        <noise sample=”5”>50</noise>

               </channel>
</Hybrid>

        </FEB>
    </system>

Writing Conditions to the Database



Omar Moreno (SCIPP) Heavy Photon Search Software Meeting November 6, 2014

To Do ...

❏ Currently, running the readout and recon require the use of an internet connection.  A user can connect 
to a local copy of the database, but this requires a user to clone the database.  Can this be simplified? 
(Jeremy)

❏ The use of tags to distinguish multiple conditions sets with the same run number needs to be verified 
to work (Jeremy/Omar)

❏ The EVIO to LCIO conversion of SVT data needs to be updated (Omar)
❏ The new data format is already known, so it’s just a matter of putting in the work

❏ All test run conditions need to be loaded into the database (Omar)

Warning!  The flat file conditions drivers will be deleted on Monday, 11/10/2014.  If you haven’t tried 
using the new conditions system by then, be aware that your analysis drivers may break. 


