



# S. Tsujimoto, J. Kushida, K. Nishijima and K. Kodani

Blazar Variability and Evolution in the GeV Regime

Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan

#### Abstract

One of the most important problem of the blazar astrophysics is to understand the physical origin of the blazar sequence. In this study, we focus on the GeV gamma-ray variability of blazars and a evolution perspective we search the relation between the redshift and the variability amplitude of blazars for each blazars subclass. We analyzed the Fermi-LAT data of the TeV blazars and the bright AGNs (flux  $\ge 5 \times 10^{-9}$  [cm<sup>-2</sup> s<sup>-1</sup>]) selected from the 2LAC (the 2nd LAT AGN catalog) data base. As a result, we found a hint of the correlation between the redshift and the variability amplitude in the FSRQs. Furthermore the BL Lacs which have relatively lower peak frequency of the synchrotron radiation and relatively lower redshift, have a tendency to have a smaller variability amplitude.

## Introduction

The spectrum energy distribution (SED) of blazars has double peaks, one at lower energy ranges (radio to X-rays) and the others at higher energy ranges (X-rays to gamma rays).

Blazars are classified into two types; FSRQs and BL Lacs, according to a emission line. BL Lacs are moreover classified according to the first peak of their SED; They are called low-frequency peaked BL Lacs (LBLs), intermediate-frequency peaked BL Lacs (IBL) and high-frequency peaked BL Lacs (HBL) in order of increasing frequency. (FSRQs have the lower first peak of SED than LBLs).

These peaks have anti-correlation between peak frequency and bolometric luminosity [1]. This relationship have been called the blazar sequence.

One of the most important probrem of the blazar astrophysics is to understand the physical origin of the blazar sequence.



We computed GeV gamma-ray variability (Fvar) of each classified blazars and investigated association between Fvar and blazar sequence. We also obtained Fvar distribution for redshift due to derive the evolution of blazar.

# **Fvar (fractional rms variability amplitude)**

Equation 1 shows the Fvar which is applied to calculate the variability amplitude considering the error. Fvar is often used in computation variability amplitude for each spectral band[2].



### Data selection

We selected AGNs in 2LAC (the second LAT AGN catalog)[3] and TeVCat [4]. selection criteria were as follows

- 1. It was decided which subclass was belonged to (HBL or IBL or LBL or FSRQ)
- 2. It had known redshift.
- 3. flux >  $10^{-9}$  [cm<sup>-2</sup> s<sup>-1</sup>] in 2LAC.

In this study, redshift and subclass was adopted in the 2LAC and TeVCat. However, the redshift of PKS 1424+240 was referred to Furniss(2013) [5].

| Name                           | redshift | Sub<br>class | Name             | Redshift | Sub<br>class | Name             | redshift | Sub<br>class |
|--------------------------------|----------|--------------|------------------|----------|--------------|------------------|----------|--------------|
| NGC 1275                       | 0.017559 | FRI          | S2 0109+22       | 0.265    | IBL          | PKS 0537-441     | 0.892    | LBL          |
| IC 310                         | 0.0189   | FRI          | PKS 0301-243     | 0.266    | HBL          | AO 0235+164      | 0.94     | LBL          |
| Mrk 421                        | 0.031    | HBL          | S5 0716+714      | 0.31     | LBL          | S 30218+357      | 0.944    | blazar       |
| Mrk 501                        | 0.034    | HBL          | OT 081           | 0.322    | LBL          | OP 313           | 0.997249 | FSRQ         |
| 1ES 2344+514                   | 0.044    | HBL          | 1ES 0502+675     | 0.341    | HBL          | PKS 0454-234     | 1.003    | FSRQ         |
| 1ES 1959+650                   | 0.048    | HBL          | PKS 1510-089     | 0.361    | FSRQ         | PKS 2201+171     | 1.076    | FSRQ         |
| AP Lib                         | 0.049    | LBL          | 3C 66A           | 0.41     | IBL          | PKS 0426-380     | 1.111    | LBL          |
| 3C 371                         | 0.051    | IBL          | 4C +21.35        | 0.432    | FSRQ         | PKS B1908-201    | 1.119    | FSRQ         |
| <b>BL</b> Lacertae             | 0.0686   | IBL          | PG 1553+113      | 0.5      | HBL          | PKS 1551+130     | 1.30814  | FSRQ         |
| PKS 2005-489                   | 0.071    | HBL          | GB 1310+487      | 0.501    | FSRQ         | PK S0244-470     | 1.385    | FSRQ         |
| RGB J0152+017                  | 0.08     | HBL          | 3C 279           | 0.536    | FSRQ         | PKS 2023-07      | 1.388    | FSRQ         |
| W Comae                        | 0.102    | IBL          | MG2 J071354+1934 | 0.54     | FSRQ         | PKS 0402-362     | 1.417    | FSRQ         |
| 1ES 1312-423                   | 0.105    | HBL          | 4C 31.03         | 0.603    | FSRQ         | PKS 0250-225     | 1.419    | FSRQ         |
| VER J0521+211                  | 0.108    | IBL          | PKS 1424+240     | ≥0.6035  | IBL          | B2 1520+31       | 1.484    | FSRQ         |
| PKS 2155-304                   | 0.116    | HBL          | S4 1849+67       | 0.657    | FSRQ         | PKS 2052-47      | 1.489    | FSRQ         |
| RGB J0710+591                  | 0.125    | HBL          | 4C +56.27        | 0.664    | LBL          | PKS 0215+015     | 1.721    | FSRQ         |
| 1ES 1215+303                   | 0.13     | HBL          | S5 1803+784      | 0.68     | LBL          | MG1 J123931+0443 | 1.76095  | FSRQ         |
| PKS 1717+177                   | 0.137    | LBL          | Ton 599          | 0.724565 | FSRQ         | MG2 J101241+2439 | 1.805    | FSRQ         |
| 1ES 0806+524                   | 0.138    | HBL          | B2 0716+33       | 0.779    | FSRQ         | 4C +38.41        | 1.81313  | FSRQ         |
| TXS 1055+567                   | 0.14333  | IBL          | TXS 0106+612     | 0.785    | FSRQ         | PKS 0805-07      | 1.837    | FSRQ         |
| 3C 273                         | 0.158    | FSRQ         | B2 2234+28A      | 0.795    | LBL          | PKS 1502+106     | 1.83928  | FSRQ         |
| 1ES 1218+304                   | 0.182    | HBL          | PKS 0440-00      | 0.844    | FSRQ         | 4C 01+02         | 2.099    | FSRQ         |
| OX 169                         | 0.211    | FSRQ         | 3C 454.3         | 0.859    | FSRQ         | S4 0917+44       | 2.18879  | FSRQ         |
| 1ES1011+496                    | 0.212    | HBL          | TXS 1920-211     | 0.874    | FSRQ         | PMN J1344-1723   | 2.506    | FSRQ         |
| Table 1: Analyzed blazar list. |          |              |                  |          |              |                  |          |              |

discussion

#### Results

Data analysis We analyzed the Fermi LAT data between 4th Aug. 2008 and 9th June 2014, using the UNBINNED likelihood analysis package of ScienceTools-v9r33p0 with the P7REP\_SOURCE\_V15 post-launch instrument response function. We selected events of energy between 100 MeV and 300 GeV within 10 degrees of the

Fvar and subclass are potentially-correlated, and blazar subclass seems to change along the increasing

### position of each sources.

- The spectra of target AGNs were fitted to the log-parabolic
- $dN/dE = N_0 (E/100 \text{MeV})^{-\{\alpha+\beta \log(E/100 \text{MeV})\}}, N_0 [\text{cm}^{-2} \text{ s}^{-1} \text{MeV}^{-1}].$
- $N_0$  was flux normalization,  $\alpha$  and  $\beta$  were photon index parameter. If  $\beta$  equal zero, the log-parabolic spectrum becomes same meaning as Power-Law spectrum.
- Background sources were used the spectra listed in 2FGL (the second Fermi Gamma-ray LAT) catalog. The analysis details were described in Tsujimoto et al (2014)[6]. We used TS > 9.0 ( >  $3\sigma$ ) and  $\alpha$  > 0.01 to compute Fvar.

First step, we made 30 days bin light curves (shortest time scale in this study). Second step, if calculated Fvar was not required some criteria(upper limit rate  $\leq 0.6$ light curve had significant variation in  $\chi^2$  test ( > 2 $\sigma$  significant) ), we adopted more long separate time (bin size) light curves (60 days, 90 days, 150 days, and 300 days).

#### Reference

[4] http://tevcat.uchicago.edu/ [1] G. Fossati, et al., MNRAS, 299, (1998) 433. [2] MAGIC Collaboration, arXiv:1409.3389 (2014) [5] A. Furniss, Apj, 768, (2013) 6 [3] Fermi-LAT Collaboration, ApJ, 743, (2011) 171 [6] S. Tsujimoto, et al, JPS conference proceedings, 1, (2014) 013106 redshift (fig.4).

- HBLs and IBLs are distributed with z < 0.5, in contrast to the FSRQ distribution (fig.4 and 5).
- The first peak of SED tend to be lower frequency with the increasing Fvar (fig.5). However (some problems)
- The synchronizing of redshift and Fvar might be caused by observing effect.
- There is a possibility that peak of Fvar histogram became large value because low level flux sources are could not calculate Fvar.
- Some AGN redshifts have large margin of errors.
- This study could not considered the short time scale variability (< 30 days). If the short time scale variability occurred, Its Fvar become larger than our results.
- We selected the bright AGN and TeV gamma-ray sources. Therefore, our sample might contain selection effects.
- Fvar values are changed if log-parabola and power-low spectra are used as the fitting function.

#### Conclusion

- Fvar and subclass are potentially-correlated, and blazar subclass seems to change along the increasing redshift.
- HBLs and IBLs are distributed with z < 0.5, in contrast to the FSRQ distribution.
- The first peak of SED tend to be lower frequency with the increasing Fvar.